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ABSTRACT 
 

A dynamic subversion attack on the Windows XP Embedded operating system is 

demonstrated to raise awareness in developers and consumers of the risk of subversion in 

commercial operating systems that may be safety critical. SCADA (Supervisory Control 

and Data Acquisition) systems that monitor and control our critical infrastructure depend 

on embedded systems.  

The attack can be loaded onto a fielded system that has been subverted with a 

small software artifice. The artifice could be inserted into the system at any time in the 

system’s lifecycle. The attack provides a flexible method for the attacker, who may not 

be the same individual who inserted the artifice, to gain total control of the subverted 

system. Due to the dynamic loading property of this subversion, the attacker does not 

have to decide the aspect of the system to be targeted until a time of her choice.  

The attack does not exploit an existing flaw in the target module but is possible 

because the initial artifice is inserted into the kernel of an operating system where 

adversaries have access to source code. This thesis discusses certain aspects of known 

methods for developing systems free from subversion. Several projects that utilized these 

methods are presented. 
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EXECUTIVE SUMMARY 
 

Operating system subversion is the most sophisticated and powerful threat to 

computer systems and is the technique of choice for the well-funded professional 

attacker. Other attacks on computer systems rely on random flaws or user mistakes and 

are constrained to the permissions of a user account. A subversion attack inserts a trap 

door artifice into the most privileged area of the operating system, enabling it to bypass 

all security mechanisms. The trap door artifice remains dormant until triggered by the 

attacker. A dynamic subversion attack on the Windows XP Embedded operating system 

is demonstrated here to raise awareness of the risk of subversion in commercial operating 

systems that may be safety critical.  

SCADA (Supervisory Control and Data Acquisition) systems that monitor and 

control our national critical infrastructure depend on embedded devices. In the future, 

many of these devices might run Microsoft operating systems. The means, motive and 

opportunity exist for an attacker to implement a subversion of our national critical 

infrastructure. To date, the only known way of developing systems free from subversion 

is through “verified protection” methods. These methods are discussed and several 

projects that utilized these methods are presented. There is no guarantee that the 

operating systems that support the national critical infrastructure and are maintaining our 

safety and security have not already been subverted if they have not been developed with 

“verified protection” methods.  

The attack demonstrated here could be loaded onto a fielded system that has been 

subverted with a small (six lines of code) software artifice inserted into Windows XP (50 

million lines of code.) The initial artifice could be inserted into the system at any time in 

the system’s lifecycle. The attack provides a flexible method for the attacker, who may 

not be the same individual who inserted the artifice, to gain total control of the subverted 

system. Due to the dynamic loading property of this subversion, the attacker does not 

have to decide the aspect of the system to be targeted until a time of her choice. 



 xviii

For this demonstration, the encryption mechanism of IPSec (Internet Protocol 

Security) is bypassed to create the equivalent of a “wiretap,” in which all data that is sent 

by the subverted machine using IPSec will be copied, sent out in the clear, and 

intercepted by the attacker. This is demonstrated by sending a file containing sensitive 

information via FTP (File Transfer Protocol) over an IPSec connection. We are not 

exploiting a random error, vulnerability or flaw in the Windows XP IPSec 

implementation, or weak cryptography, but are deliberately inserting the trap door 

mechanism. This attack is possible because the initial artifice is inserted into the most 

privileged portion of an operating system for which adversaries have access to source 

code directly or indirectly, e.g., via reverse engineering of a normal commercial product 

distribution. 
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I. INTRODUCTION 

A. PURPOSE 

Operating system subversion through the insertion of a software artifice is the 

most sophisticated threat to computer systems and the attack of choice for the well-

funded professional. This thesis presents a demonstration of a dynamic trap door 

subversion of the Windows XP Embedded operating system. To demonstrate the 

capability of the subversion, an attack will be presented that bypasses the encryption 

mechanism provided by IPSec (Internet Protocol Security). To illustrate the exfiltration 

of clear text data, a file containing sensitive information is sent via FTP (File Transfer 

Protocol) across an IPSec connection (see Figure 1.) We have created the equivalent of a 

“wiretap” in which all data that is sent by the subverted machine using IPSec will be 

copied and sent out in the clear and intercepted by the attacker. We are not exploiting a 

random error, vulnerability or flaw in the Windows XP IPSec implementation, or weak 

cryptography, but are deliberately inserting the trap door mechanism. 

 

Attacker

ABC ABC123123

ABC

Target Bystander

ABC

Clear text data

Encrypted data

 

 

Figure 1.   Operation of the IPSec Attack 
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Although IPSec was chosen to demonstrate the capability of the subversion 

artifice, this thesis also presents a strategy for attacking any kernel module. In this 

chapter, the technique of subversion will be compared to other computer vulnerabilities, 

the impact of a subversion attack on embedded systems will be discussed, and the design 

concept of the subversion presented here will be introduced.  

B. THE SUBVERSION THREAT 

Threats to a computer system can be classified as human error, abuse of 

authority, direct probing, probing with malicious software, penetration, or subversion 

[BRI95]. Attacks exploiting human error require determination but little skill. The 

attacker simply waits for a legitimate user to make a mistake that results in the disclosure 

of sensitive information. Abuse of authority attacks involve an insider abusing their 

authorization to violate the confidentiality, integrity or availability of the system. Probing 

attacks exploit vulnerabilities created by weak or absent security configurations and can 

be performed directly by the attacker or by malicious software such as Trojan horses, 

viruses, and worms. Penetration involves the exploitation of a random flaw in the system 

to bypass security mechanisms. Subversion of a system is a sophisticated attack involving 

the deliberate insertion of an artifice to bypass the security mechanisms of a computer 

system.  

Subversion is defined as “…the covert and methodical undermining of internal 

and external controls over a system lifetime to allow unauthorized or undetected access to 

system resources and/or information [MYE80].” A software artifice performing 

subversion differs from other forms of malicious code, such as the Trojan horse. A Trojan 

horse has an advertised function that attracts an unsuspecting user to install the software 

and a covert malicious function that benefits the attacker. A Trojan horse could be 

disguised in music player or game software, for example, and made available for 

download on the web. Unlike Trojan horses, an artifice does not require any (even 

unwitting) action on the part of a legitimate user (such as the installation of the malicious 

music player or game) and is activated remotely by some triggering mechanism. An 

artifice remains dormant and undetectable until it is triggered. While a Trojan horse is 

typically confined to the permissions granted to the user who runs it, a subversion artifice 

runs with kernel-level permissions and is able to bypass all security mechanisms. 
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C. MEANS, MOTIVE AND OPPORTUNITY 

The national critical infrastructure [PCCIP97], [NSPPCI] includes the energy, 

transportation, telecommunications, public health, water, agriculture, and shipping 

industries. Attacks on energy infrastructures could disrupt the oil, gas, electrical, and 

power systems. Subverted embedded devices used in transportation infrastructures 

controlling rail, air, and automotive traffic could allow trains to be diverted or collide, 

affect air traffic control, or cause automotive accidents through disruption of traffic 

signals. ATM machines could be made to export account information, or spew money 

spontaneously. Telecommunications could be slowed, disrupted or monitored. Public 

health could be affected through attacks on hospital systems and emergency response 

systems. Water systems, systems handling hazardous chemicals, and food production 

systems also utilize embedded devices and attacks could inflict significant damage. 

Embedded systems in weapons systems could be subverted to malfunction. Sensors used 

in food production and agriculture systems as well as postal and shipping infrastructures 

utilize embedded devices and could be vulnerable to attack. 

A cyber attack could be used to amplify the effects of a physical attack on the 

critical infrastructures to cause total denial of service affecting the economy, national 

security and causing extensive disruption and casualties. Many computer systems 

supporting the critical infrastructure depend heavily on embedded devices and 

Commercial Off the Shelf (COTS) software. Supervisory Control And Data Acquisition 

(SCADA) systems monitoring these infrastructures utilize embedded devices [COH03]. 

There is no reason to believe that these systems are not subverted. This section presents 

recent examples illustrating that the means, motive, and opportunity [AND02] to subvert 

COTS systems exist. 

1.  Means 

Subverting a system through a software artifice requires planning the insertion 

and design of the artifice as well as the implementation of the artifice. The attacker must 

have an understanding of operating systems and intermediate programming skills. Many 

people have these skills or could be easily trained. The artifice may vary in sophistication 

and skill requirements depending on what phase in the software lifecycle it is implanted, 
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what system is targeted, and how well it is hidden. The artifice should ideally be designed 

and implemented so that future legitimate updates and patches to the system will not 

affect its use.  

As part of his Master’s thesis at the Naval Postgraduate School, Emory Anderson 

[AND02] implemented a subversion of the Linux operating system that consisted of 

inserting an additional 11 lines of source code into the 4 million lines of code comprising 

Linux. When triggered by a malformed UDP packet specifying a user, the Network File 

Service (NFS) would allow that user to bypass all access control checks.  This 

demonstration was developed under the time and resource constraints of Master’s thesis 

work. 

2.  Motive 

The planting of the artifice can take place well before it is ever exercised and may 

be implemented by one person or group and exercised by another. The actual attack may 

require much less skill and may allow hackers to sell the capability to interested parties. 

Unlike penetration attacks, which rely on the existence and discovery of an accidental 

vulnerability in the system, a subversion attack inserts a trap door that is guaranteed to be 

there.  

Although obfuscation is not an objective of this research, we note that as a 

practical matter an artifice is virtually undetectable due to the small amount of code 

required and the triggering characteristic. Contemporary operating systems are complex, 

consisting of many interdependent modules with millions of lines of code. This 

complexity means that no one person can understand the system and creates the 

opportunity for a software artifice to go unnoticed. An artifice can also be implemented 

in such a way that it does not show up in the code base of the system. Thompson, one of 

the developers of the UNIX operating system, described during his acceptance speech for 

the Turing Award a way to compromise the UNIX C compiler to insert a back door into 

the UNIX operating system. This would allow him to log in to any UNIX system that had 

been compiled with the compromised compiler [THO84].  In 1974, a trap door was 

inserted into the Multics operating system during a security evaluation. The system was 

used by the Air Force Data Services Center in the Pentagon. The artifice was not found 
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until a year after the developers revealed which module of the system contained the 

artifice [KAR02][KAR74]. 

3. Opportunity 

A system could be subverted during the design, implementation, distribution, or 

maintenance and support phase of its lifecycle. As an employee at a major software 

company, an attacker could influence the design process or implement the artifice 

directly. Since the few lines of code necessary for the subversion can be spread across 

many modules, it is unlikely that an artifice would be detected through code reviews. An 

artifice could also be patched into the system during distribution, or in fielded systems 

disguised as a legitimate patch or update. An artifice could even be introduced by a 

traditional penetration, e.g., exploiting a “buffer overflow” vulnerability, and persist long 

after patches to correct that vulnerability were installed. The artifice would not reveal 

itself through testing unless the trigger was guessed. A tool could be developed to 

systematically enter all possible inputs to a specific system with the hope of triggering an 

artifice. This could take months or might never be successful (it would be difficult to 

recognize success if it were achieved, an artifice would have to be distinguished from an 

ordinary flaw.) Testing can only prove the existence of flaws, not the absence of 

malicious code [KAR74]. 

Software Easter Eggs illustrate the ability of unauthorized code to slip through 

change management to fielded systems. These hidden features or messages that 

developers add to software as a signature are generally benign. One website 

(www.eeggs.com) lists 2771 computer Easter eggs; 149 in operating systems, 848 in 

applications and 134 in hardware.  

Within the last few years several articles have surfaced in the news that indicate 

malicious individuals are aware of the powerful technique of operating system subversion 

and opportunities for attackers to subvert popular commercial operating systems exist. 

The increasing use of Commercial Off The Shelf (COTS) software in critical systems 

highlights the severity of these reports. In October of 2000, a hacker had access to 

Microsoft source code for as long as 60 days. Microsoft downplayed the damage and 

denied that any code had been modified. Even if the integrity of the code remained intact, 
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access to the source code could aid an attacker in developing an artifice added as a patch 

or update [KEA00]. In January of 2001, Verisign issued two Class 3 Software Publisher 

Certificates to an individual claiming to be a Microsoft representative. These certificates 

would allow an attacker to digitally sign software and distribute it as a Microsoft product 

[VER01]. In December of 2001, a captured Al Qaeda member told Indian police that 

other members of the group had infiltrated Microsoft as programmers with the intent of 

adding “Trojans, trapdoors, and bugs in Windows XP.” Microsoft characterized the 

report as “bizarre” but did not deny that the individuals worked for the company 

[THU01]. In December of 2002, the software firm Ptech Inc., which produces enterprise 

data solutions used by several government agencies, was suspected of ties to Al Qaeda. 

Ptech source code was analyzed for the existence of subversion; not surprisingly, nothing 

was found, but government officials were unable to prove the absence of malicious code 

[VER03] [THI02]. 

D. THE 2-CARD LOADER CONCEPT 

The subversion demonstrated in this thesis was developed in cooperation with 

[LACK03] and [ROG03]. The three theses demonstrate a subversion artifice modeled 

after the 2-card loader. The following quote provided by [SCH03] describes the origin of 

the 2-card loader concept:  

 

During some of my early tiger team participation with Jim 
Anderson and others, it was recognized that a significant aspect of the 
problem of Trojan horse and trap door artifices was the ability of the 
artifice itself to introduce code for execution.  A self-contained example 
was a subverted complier in turn emitting an artifice, 
as hypothesized in the early 1970's Multics evaluation by Paul Karger and 
me [KAR02], which stimulated Thompson's discussion of this in 
his Turing lecture [THO89][THO84].  Soon after Karger's report, other 
tiger team members observed that the ultimately desired artifice did not 
have to be self-contained, but could be imported later.  It was suggested 
that a particularly insidious packaging of this could have the initial 
artifice provide the functions of simple bootstrap loader 
typically hardwired in the computers of that era.  These 
loaders did something like read the first two binary cards from the card 
reader and initiate execution of what was read, which was usually a further 
bootstrap program to read and execute additional binary cards.  Hence this 
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class of attack came to be commonly referred as the "2-card loader 
problem."    

The concept and term became quite commonplace, although I don't 
know of any widely reported actual implementation.  Myers during his 
1980 research at NPS was well aware of the 2-card loader problem, and 
his thesis implicitly included this in the trait of a trap door he 
termed "adaptability" which included being "designed to modify operating 
system code online." [Page 45 MYE80].  Much later Don Brinkley and I 
in our 1995 IEEE essay had the 2-card loader problem in mind when 
we briefly described a hypothetical attack where, "Among the functions 
built into the Trojan horse was the ability to accept covert software 
'upgrades' to its own program." [Page 36 of ABR95].”  

 

 The bootstrap mechanism of the 2-card loader is implemented by the 

artifice base developed in [LACK03] and the link/loader developed in [ROG03]. 

This thesis presents the attack that utilizes the services of the bootstrap to load 

itself onto the target system and modify a running kernel module.  

E. SUMMARY 

Subversion is a real threat to computer systems and a powerful tool for the 

professional attacker. The means, motive and opportunity exist for attackers to insert 

malicious artifacts into commercial operating systems. The artifice demonstrated in this 

thesis is based on an idea that was presented 30 years ago and was completed within 90 

days of access to Windows XP source code. To date, the only way to ensure that there is 

no malicious code in a system is to use a combination of formal proofs and rigorous 

mappings to demonstrate that the behavior of the system complies with an established 

security policy that the system was built to enforce. The capability to do this has existed 

for some time and systems with such “verified protection” have been built. Since the 

operating systems we rely on to control our critical infrastructure and protect our 

sensitive information were not developed with a formal development methodology, there 

is no reason to believe that they do not contain subversive artifacts.  

The techniques for building secure computer systems are discussed in Chapter II. 

The subversion presented here is demonstrated on the Windows XP Embedded operating 

system, the architecture of which is illustrated in Chapter III. The attack subverts the 

protection provided by the Windows implementation of IPSec, which is presented in 
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Chapter IV. The design of the developed attack is described in Chapter V and the 

development environment and implementation are explained in Appendix A. Conclusion 

and analysis of the work are in Chapter VI.  
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II. BUILDING A SECURE SYSTEM 

A. INTRODUCTION 

In order to build a secure system, it is necessary to define what it means for the 

system to be “secure.” This characterization is documented in a security policy model 

that governs the development of the system. “Without models for guidance, system 

designers are forced to apply ad hoc security-related techniques throughout the design 

and implementation of a system. The model…rigorously and precisely defines the 

notions of ‘security’ and ‘compromise,’ and identifies elements that correspond to those 

in real systems [SCH75].” A system that is built to enforce a specific policy model can be 

proven secure with respect to this policy. It can be demonstrated that the system provides 

the functionality required in the policy model. To ensure that the system does not contain 

a subversion artifice such as the one demonstrated in this thesis, it must be shown that the 

system only contains functionality in support of the policy and nothing more.  

1. Security Kernel Concept 

A security kernel is “…the hardware and software that realize the reference 

monitor abstraction [AMES83].” A reference monitor is an abstraction of a system that 

mediates the requests of active subjects to gain access to passive objects. The reference 

monitor is characterized by three properties: completeness, isolation, and verifiability 

[AND72].  Completeness refers to the property that the reference monitor must mediate 

all accesses of subjects to objects. Isolation requires that the reference monitor 

implementation be separated from the rest of the operating system to ensure that it is 

“tamper proof.” Verifiability means that the kernel must be small enough and structured 

in a way to permit formal analysis of the correspondence between the reference monitor 

implementation and the security policy model.   

A system supporting a traditional security kernel should provide at least three 

execution domains of different privilege levels: one for the security kernel at the highest 

privilege level, one for the rest of the operating system (also referred to as the 

supervisor), and one for user applications at the lowest privilege level (see Figure 2.) 

These domains provide the isolation requirement for the reference monitor 
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implementation and are also known as protection rings [SHIR81] [SS72]. A subject in 

this abstraction is a process executing in a specific domain. An object is any entity in the 

system to which a subject is requesting access. Each subject and object has an access 

class, which the security kernel can interpret to mediate access requests according to the 

security policy. A trusted subject can operate at more than one access class to perform 

operations such as the downgrading of information, which the security kernel prohibits 

for other subjects but are necessary for the operation of the system. A trusted path 

mechanism is implemented to authenticate the kernel to the user.  This mechanism, which 

includes a secure attention key, allows the user to ensure that she is communicating with 

the kernel and not some malicious code that is masquerading as the kernel. 

 

Applications

Supervisor

Kernel Kernel Interface

Operating System Interface

User Interface

Trusted
Subjects

Users

Trusted
Users

 

 

Figure 2.   A Kernel Based Operating System, After [AME83] 
  

The security kernel is a small core of security-relevant mechanisms that are 

specified in the security policy model. By concentrating the security-relevant 

mechanisms into a small, comprehensible part of the system, the system can be analyzed 

to verify that it enforces the security policy model in all possible system states. A 

simplified design is also necessary to allow the system to be analyzed for covert 
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channels. A covert channel occurs when system resources are used to signal information 

from a higher security level to a lower security level in violation of the security policy.  

2. Structural Techniques for Security Kernel Based Systems  

The techniques used to achieve the properties of isolation, completeness, and 

verifiability in a security kernel include: process isolation, modularity, layering, data 

hiding, and abstraction, effective use of hardware, principle of least privilege, a well-

defined interface to the security kernel, and minimization of complexity. Each process 

should be isolated through the use of a separate address space. The security kernel also 

defines and constrains access to the address space in its own domain, which protects it 

from tampering. Modularity, layering, data hiding and abstraction are good software 

engineering practices and improve the verifiability of the system. Mechanisms 

implemented in hardware are generally believed to be more stable and more difficult to 

subvert after initial development than software and should be utilized by security 

functions if possible. Hardware supporting an implementation of a security kernel should 

include mechanisms to permit explicit processes, memory protection, execution domains, 

and I/O mediation [AME83]. The Principle of Least Privilege states that subjects should 

only be granted the minimum access level necessary to do their jobs and no more. This 

reduces the opportunity for misuse of the system. All functions at the user interface to the 

security kernel should be defined, with no undocumented functionality and all 

components of the security kernel identified. All of these techniques must be employed in 

the system to enforce a security policy and ensure that the system is free from subversion 

[CC99].  

This chapter addresses techniques to provide the verifiability requirement through 

minimizing the complexity of the security kernel and the completeness requirement by 

defining the security kernel interface through access control policy models. A security 

kernel that embodies the properties of verifiability and completeness is also analyzable.  

Additional related properties, such as code correspondence, trusted distribution and 

configuration management of tools are needed to achieve verified protection. Refer to 

[LACK03] for an analysis of modularity, layering and abstraction and [ROG03] for an 

examination of the effective use of existing hardware mechanisms, which are also 

needed. 
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B. A WELL-DEFINED INTERFACE 

A well-defined interface to the security kernel is required to ensure the 

completeness property. The interface is defined through access control policy models. 

There are two types of access control policies, each of which has several models that can 

be implemented to enforce the desired access rules.  

1. Types of Access Control 

Access to resources in a system can be enforced in two ways. Discretionary 

Access Controls (DAC), provide a run time interface for users to modify the 

authorizations granted to objects under their control. In a DAC system, access control 

lists (ACL) or Capability Lists are used to represent and implement privileges. In the first 

case, each file has an ACL that lists subjects and the modes (such as read, write, and/or 

execute) under which they are authorized to access the file using an ACL policy. In the 

latter case, each subject has a capability list that lists the files and access modes that are 

authorized using a Capability List policy. Access is granted if there is an entry allowing 

the requested access in the ACL or Capability list. Mandatory Access Controls (also 

called Non-discretionary or MAC) are used to enforce a security policy that is static, i.e., 

is what has been termed “global and persistent”. There is no run time interface for 

modifying authorizations presented to users. In a MAC system all subjects and objects 

are characterized by a sensitivity level attribute and access is granted based on the 

relationship between these levels.  

2. MAC Policies 

In MAC policies active subjects are granted or denied authorization to access 

passive objects based on the sensitivity levels of the subjects and objects. A sensitivity 

level consists of a hierarchical classification (such as Top Secret, Secret, or Classified) 

and a set of non-comparable categories (such as Apples and Oranges). These categories 

enable the enforcement of the principle of least privilege; all those cleared for Top Secret 

may not need to know all the information at that level to do their jobs. A sensitivity level 

P is said to dominate sensitivity level R if the sensitivity classification of P is greater than 

or equal to the classification of R and the set of categories of R is a subset of the 

categories of P.  
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The Bell and LaPadula model is commonly used to describe a MAC policy for the 

confidentiality of the information protected by a system. An object can be read or 

modified by a subject only if two properties are satisfied: the simple security property and 

the *-property (pronounced the “star property”). The simple security property states that 

a subject may gain read access to an object if the subject’s sensitivity level dominates the 

object’s sensitivity level. The *-property states that a subject may gain write access to an 

object if the object’s sensitivity level dominates the subject’s sensitivity level [BLP75].  

 The Biba model addresses the modification or integrity of information through 

two properties that are the parallel of those in the Bell and LaPadula Model. The simple 

security property for integrity requires that the subject’s sensitivity level must be 

dominated by the object’s sensitivity level in order for the subject to gain read access. 

The integrity equivalent of the *-property states that the sensitivity label of the subject 

must dominate the sensitivity level of the object [BIBA77].  

These instances of MAC policies define an ideal system where information 

remains confined within its sensitivity domain when the system is started in a secure 

initial state. An implementation of the Bell and LaPadula model ensures that information 

from a higher confidentiality level cannot leak to a lower confidentiality level and an 

implementation of the Biba model ensures that information from a lower integrity level 

cannot contaminate information at a higher integrity level.  

3. Security as a Safety Property 

Harrison, Ruzzo and Ullman [HRU76] modeled the access matrix of an abstract 

protection system with a Turing machine to determine the safety of an arbitrary system. 

The safety of a system in this case is the property that there is not a series of commands 

that result in a subject gaining temporary access rights to an object that is contrary to the 

security policy. The configuration, Q, representing a protection system was defined as:  

Q =  (S, O, P), where 

S  = {S0, S1…Sn} is the set of current subjects 

O = {O0, O1...On} is the set of current objects  

S ⊆  O 

R is a set of access rights 
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P is an access matrix, such that  

P[s, o] = the access rights of subject s to object o, and 

P[s, o] ⊆  R 

State transitions of the Turing machine are the result of primitive commands 

(enter a right, delete a right, create a subject, create an object, delete a subject and delete 

an object), which are a set of conditions followed by operations. The conditions must be 

met before the operations, which modify the entries in the access matrix, are executed.  

They proved that the safety of an arbitrary system is undecidable; it is analogous 

to solving the halting problem for a Turing machine. This means that there is no universal 

algorithm that can determine the security of an arbitrary access control policy. However, 

the safety of mono-operational systems, in which no new subject or objects can be 

created, is decidable. Models can be developed for specific, highly stratified systems that 

enable the security to be decidable with respect to a mandatory access control policy.  

The MAC policy enforcement of the Bell and LaPadula and the Biba models mentioned 

above are decidable examples.  These models assume tranquility of sensitivity labels: the 

labels are universally consistently interpreted and do not change over time.  

4. MAC Models  

Denning [DEN76] introduced a Lattice Model for analyzing the information flow 

of a system and provided a proof that a lattice can represent the confinement properties of 

a mandatory access control policy. When a finite set of labels can be partially ordered and 

there is a least upper bound label and a greatest lower bound label, a universally bound 

lattice can be constructed. A least upper bound and greatest lower bound are required to 

allow labels composed of sensitivity levels and a set of categories to be compared with a 

dominance relationship. She also showed that if the labels do not form a partially ordered 

set, a MAC policy couldn’t be represented. The ability to represent an access control 

policy in lattice form has the additional benefits of utilizing well-known mathematical 

concepts and terminology and can be efficiently represented by a computer system.  

While lattice based policies are generally identified with military systems, they 

are flexible and can be used for other applications. Lipner concluded, “…The lattice 

model may in fact be applicable to commercial data processing [LIP82].” The Chinese 
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Wall model [BRN89] is an example of a Lattice Model policy used in the commercial 

sector. Careful analysis of the organizational requirements and decomposition into 

confidentiality and integrity sensitivity levels and categories is necessary to apply the 

Lattice Model to commercial systems. 

Bell [BELL91] gives several examples of common policies implemented using a 

Universal Lattice Machine (ULM). A ULM is a lattice system with four functional 

extensions: binding active subjects to passive objects, exclusion of a subject from binding 

to more than one object at a time, the ability to roll-back to a previous system state, and 

n-person control or separation of privilege. The Clark & Wilson [CLW87] [SHO88] 

integrity model; multinational sharing for coalitions; the Chinese Wall [BRN89] secrecy 

model based on conflict of interest classes and used by financial institutions; and 

originator control models can all be expressed with a Universal Lattice Machine. Bell 

also argued that including policy conversion logic in the security kernel does not 

significantly impact complexity. 

Schell and Shirley [SHIR81] introduced a technique “for evaluating the 

relationship between policies and mechanisms” called the assignment technique. This 

technique provides a way to evaluate the ability of a mechanism to enforce a policy by 

mapping (assigning) the security levels of a policy to the execution domains provided by 

the hardware mechanism. This implements the isolation requirement for a security kernel 

(also known as program integrity). The program integrity policy must include a program 

integrity class for each subject and object and “the ordering of the program integrity 

classes must be fixed according to the constraints of the policy maker.” There are two 

properties that must be enforced to provide program integrity: the simple program 

integrity condition and the program integrity confinement property. The simple program 

integrity condition handles the direct threat of a subject of lower integrity modifying an 

executable of higher integrity and states, “if a subject has ‘modify’ access to an object, 

then the program integrity of the subject is greater than or equal to the program integrity 

of the object.” The program integrity confinement property handles the indirect threat of 

a higher integrity subject executing a program that was modified by another subject of 

lower integrity and states, “if a subject has execute access to an object then the program 

integrity of the object is greater than or equal to the program integrity of the subject.”  
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This technique can be used to denote a program integrity policy by assigning 

kernel, supervisor, utility, and user levels to rings 0 through 3 of the eight rings 

comprising the Multics protection ring mechanism [SS72]. Once the domains have been 

assigned to the mechanism (in this case the protection rings), the relationships can be 

analyzed to ensure that all accesses authorized by the security policy are allowed and 

reveal any unauthorized accesses that may be permitted. The authors concluded that the 

combination of a ring mechanism and security kernel design is “sufficient for enforcing 

computer security [SHIR81].” 

Irvine and Levin [IRV01] showed that the integrity of a system is limited by the 

integrity of its components. A multilevel security (MLS) system that is composed of low 

integrity COTS (Commercial Off The Shelf) software components controlled by higher 

integrity multilevel management components can provide multilevel confidentiality, but 

can only be trusted to provide the integrity of the COTS components. COTS components 

are low integrity because there is no assurance that they will not modify the data in an 

unauthorized manner. Modified objects are labeled with the greatest lower bound of their 

original integrity label and the modifying component. It is important to note this when 

determining the level of trust to place in systems utilizing COTS components. 

C. MINIMAL COMPLEXITY 

This section will discuss some of the common causes of complexity in operating 

systems, design principles for minimized systems, and introduce several examples of 

systems that contributed to the field of minimized security kernel development. It is 

important to study the findings of past computer scientists tackling the problem of 

complexity so that we do not fall victim to “ignorant originality” by reinventing an 

existing solution that may have existing flaws [PAR96].     

1. Complexity in Operating Systems  

Contemporary operating systems perform many functions and are inherently large 

and complex. Parnas [PAR96] identified several factors contributing to the complexity 

and size of operating systems.  “Software aging” occurs when code is incrementally 

modified and loses the cohesion of its original design. Compatibility support for 

applications written on previous versions of the operating system also inflates the code 
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base and adds a layer of complexity. Features added to compensate for hardware 

limitations and performance goals contribute to the complexity of the system as well.  

In his “Plea for Lean Software” Wirth [WIR95] identifies the adoption of 

unnecessary features as one of the primary causes of complexity in software. Vendors 

should refrain from adopting any features that users request without assessing the impact 

of the addition on the overall system design. The monolithic design paradigm, in which 

all features are installed while the user may require only a few, also contributes to the 

complexity of systems. A system should be designed based upon an intuitive metaphor 

and refined over time, but developers are constantly under time pressure to be first in the 

market or release the latest features. Unfortunately, good engineering does “not pay off in 

the short run.” 

For a system using formal verification techniques, a formal model of the security 

policy is drafted. From the formal model, a Formal Top Level Specification (FTLS) of 

the functions and mechanisms of the security kernel that are necessary to implement the 

formal model of the security policy is established. A formal mathematical mapping from 

the FTLS to the formal security policy model and an informal mapping of the 

implementation of the security kernel to the FTLS must be provided. These mappings 

prove by transitivity that the system performs the functions described in the security 

policy and nothing more. Then the system is analyzed for covert channels [DOD85]. To 

date, this is the only way to gain assurance that the system performs its specified 

functions correctly and has not been subverted. Testing alone can only prove the 

existence of bugs, and cannot provide assurance that the system is free of additional 

functionality not specified in the security policy model. For a complex system code 

reviews alone will not detect clandestine functionality since a human reviewer will not be 

able to understand the system as a whole. 

Security kernels must be minimized in high assurance systems in order to 

facilitate their verification. For secure systems, the security policy of the system drives 

which functional modules are included in the design of the kernel and which are 

implemented outside the kernel. Performance and functionality issues are weighed to 

determine the inclusion of non security-critical modules into the kernel [AME83]. 
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Modules that are not protection-critical and are not depended on by modules that are 

protection-critical are not implemented in the security kernel. It would be impossible to 

verify the components of a complex system mapped to a formal security policy model. 

Maureen Cheheyl, Morrie Gasser, George Huff and Jonathan Millen [CHE81] 

analyzed four formal verification systems: the Hierarchical Development Methodology 

(HDM), the Formal Development Methodology (FDM), the Gypsy verification 

environment, and the AFFIRM system. Each system provides a specification language 

processor, a verification condition generator and a theorem prover. Formal Top Level 

Specifications for HDM, developed by SRI International, are written in the non-

procedural language SPECIAL. Formal Top Level Specifications for FDM, developed by 

System Development Corporation, are written in Ina Jo. Gypsy, developed at the 

University of Texas, shares a name with its specification language, which can also be 

used as a high-level programming language. AFFIRM, developed at the University of 

Southern California, Formal Top Level Specifications are written as a set of “algebraic 

axioms” that describe the behavior of the system. Several of these systems were used in 

the projects described in Section C.3 of this chapter.   

2. Reducing Complexity 

Reducing complexity is a form of art and achieved through security engineering 

practices and the study of existing minimized systems. When adding new features to a 

system, existing capabilities should be preserved and leveraged if possible and users 

should be given the ability to choose whether to include the new features in their 

configuration to avoid the “software aging” effect. Designs should show good 

decomposition, a hierarchical structure and well defined interfaces [PAR96]. “The 

security kernel approach…directly addresses the size and complexity problem by limiting 

the protection mechanism to a small portion of the system [AME83].” 

While reducing complexity was not an explicit goal, Dijkstra’s “THE” 

multiprogramming system introduced several design and implementation techniques that 

produced a small, simple system. The system utilized a strict hierarchy, synchronization 

with semaphores, and sequential processes. This structure allowed him to limit the 

number of relevant test cases necessary to put the system into every state. Starting with 
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the lowest layer, each layer was tested and shown to be correct before the next was 

added. Dijkstra was able to prove that his system performed correctly through this proof 

by demonstration [DIJ68]. 

Parnas [PAR72] decomposes all functions into two classes: those that cause the 

system to enter a new state and those that simply return the current state. In this way a 

system module can be viewed as an interface with a set of inputs and outputs and the 

interactions of the modules analyzed. The possible values, initial values, parameters, and 

effects of each function are specified.  From these specifications a set of relevant 

properties of the system can be determined and proven correct in terms of the system 

security policy.  

Saltzer and Schroeder [SS72] identified eight design principles for a verifiable 

system: economy of mechanism, complete mediation, least privilege, separation of 

privilege, fail-safe defaults, open design, usability, and least common mechanism. These 

are more actionable elaborations of the three reference monitor principles defined by 

[AND72]. All of these principles provide support for developing a minimized high 

assurance system free from subversion.  

Economy of mechanism: A security kernel that is too complex for inspection will 

create the opportunity for errors in design and implementation and allow unintended 

functionality to go undetected. The principle of economy of mechanism directly impacts 

the size and complexity, and hence verifiability, of the security kernel.  

Complete Mediation: The kernel should be as small as possible but also complete. 

All requests to access all objects, which include access resulting from normal operation, 

system initialization, recovery, shutdown and maintenance, must be mediated by the 

security kernel. In order to mediate an access request there must be a consistently applied 

mechanism to confirm the security properties of the requesting entity. If a security kernel 

is minimized but does not enforce complete mediation, the security of the system cannot 

be assured. 

Least Privilege: The principle of least privilege states that a user should only be 

provided the minimal privilege necessary for the task at hand. If penetration occurs, the 

damage is contained within a smaller subset of the system. A penetration of user space is 
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constrained by the authorizations of the user. If all users are granted the highest privilege 

level all penetrations will have the potential for the greatest amount of damage. The 

opportunity for abuse of a granted privilege is minimized and audit log analysis can be 

minimized if each user’s authority is minimized. The principle of least privilege is 

implemented in security kernels through the use of layering and abstraction, which enable 

the security kernel to be analyzed. 

Separation of Privilege: The system should provide mechanisms to define a fine 

granularity of permission rights. For example, there should be separate privileges 

necessary to change passwords or change file access rights, instead of an omniscient 

“root” privilege. This principle simplifies the verification of each access request.  

Fail-safe Defaults: The default response for an access request should be a denial, 

with the model explicitly stating which subjects are allowed to access which objects. This 

philosophy creates a “fail-safe” system in which errors in the design or implementation of 

the system result in a failure of access and will be detected without compromise to the 

security of the system. If a system crashes, for example, the default should be to deny 

access. This principle simplifies the security kernel’s error recovery mechanism and 

enforces the property of complete mediation: if the kernel cannot properly mediate an 

access request, all access is denied. 

Open Design: The system should not rely on “security through obscurity” and be 

available for evaluation by third parties (such as Common Criteria evaluations [CC99]) 

without compromising the protection of the system. An open design permits the system to 

be analyzed.   

Usability: The system must be useable and provide an acceptable user interface. 

User documentation must be clear and readable. Functionality required by users typically 

adds a layer of complexity. However, a design that is minimized will be more easily 

understood and therefore useable. 

Least Common Mechanism: Attention should be paid to resources and variables 

accessible to more than one subject. Timing or storage covert channels can be used to 

signal information to unauthorized subjects. Reduction of the common mechanisms 

directly reduces the complexity of the system. 
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3. Systems Minimized with Respect to a Security Policy 

The following section reviews eight research projects and products that produced 

minimized security kernel systems: Schiller’s PDP-11/45 Kernel [SCH75], KSOS 

[PERRINE], the Multics Redesign Project [SCS77], SCOMP [FRA83], the Naval 

Postgraduate School SASS project [SCH83], GEMSOS [SCH85], the VAX VMM kernel 

[KAR91], and the Boeing A1 LAN [BOE91]. Each system was designed to enforce a 

specific security policy to enforce verifiable protection at the Common Criteria EAL7 

(TCSEC Class A1, in the division termed “Verified Protection”) level. From these 

examples, we can see that a verifiable system is achievable, a system built from a formal 

policy model may be useable, and the secure system can provide acceptable performance 

[SCS77]. Not all of these properties were achieved in each system. The PDP-11/45 had 

covert channels and suggestions from the Multics Redesign Project were never 

implemented, for example. The VAX VMM provided suitable performance to support its 

own development; GEMSOS and SCOMP were commercially available systems. 

Regardless of the outcome of these projects, it is worthwhile to study the applications of 

the design principles and structural techniques discussed in Sections A.2 and B.2 of this 

chapter because verified protection is the only known way to prevent subversive artifacts 

such as the one demonstrated in Chapter V.  

a. The PDP 11/45 

Schiller [SCH75] developed a verifiable kernel prototype on the DEC 

PDP-11/45 by establishing four levels of abstraction: level 0 abstracted the hardware, 

level 1 implemented sequential processes, level 2 provided segmented virtual memory 

and level 3 enforced the security model over the abstractions in levels 1 and 2. The kernel 

abstractions create a virtual machine environment for each user with segmented virtual 

memory that is organized into a hierarchical directory structure. The security policy 

includes mandatory access control based the Bell and LaPadula model [BLP75] and 

discretionary access control implemented through access control lists. 

The Schiller kernel is a descriptor-based system with Active Segment 

Table, Process Table, Process Segments, and Memory Block Table data structures. The 
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possible return values, parameters and effects for each kernel function are specified in a 

similar method to [PAR72].  

b. Kernelized Secure Operating System (KSOS) 

The Kernelized Secure Operating System (KSOS) [PERRINE] was 

designed from the start to enforce a multi-level security policy and was intended to be a 

provably secure UNIX replacement. The KSOS architecture was divided into 3 functional 

areas: a security kernel, the Non-Kernel-Security-Related (NKSR) software, and the 

Kernel Interface Package (KIP.) The security kernel is a minimized and complete 

operating system that supports a secure execution environment. The kernel was specified 

in SPECIAL and formally verified using an automated tool implementing the 

Hierarchical Design Methodology (HDM). The NKSR provides additional security-

related operating system functions that execute outside the security kernel. Since KSOS 

was meant to replace UNIX, the KIP was implemented to support a run-time environment 

for UNIX applications by translating UNIX system calls into KSOS kernel calls. 

The KSOS security policy included three policy models: mandatory access 

control was described by the Bell-LaPadula model [BLP75] for confidentiality and the 

Biba model for integrity [BIBA77], and discretionary access control was described by the 

UNIX discretionary model. The discretionary permissions of read, write and execute can 

be granted to the owner, a group, or all users. The kernel attaches a sensitivity label to all 

subjects and objects when they are created. The labels consist of a security level, a set of 

security categories, an integrity level, and a set of integrity categories. The rules of all 

three models must be satisfied for each authorization that is granted. 

The kernel is divided into four modules: Process Management, Memory 

Management, Input/Output, and the Reference Monitor implementation. All objects in 

the KSOS security kernel are given a unique descriptor called a Secure Entity IDentifier 

(SEID), which must be passed to the kernel interface in order to access kernel objects.  

The Process Management module handles the creation, deletion, communication and 

scheduling of processes. Trusted processes, which are authorized to act outside of the 

security policy for special security operations such as the downgrading of information, 

are also supported by the Process Management component. The Memory Management 



23 

module manages the allocation, deallocation, swapping, and access control of primary 

memory. Memory is divided into segments that can exist in either of the Kernel, 

Supervisor, or User execution domains supported by the hardware. KSOS segmentation 

supports shared segments between processes, which can provide high bandwidth kernel 

mediated communication between processes. The I/O Management module handles 

devices, disk extents, files and file subtypes. Each device has range of a minimum and 

maximum security classification level for the information that it can handle. Terminal 

devices can have several “virtual paths” which can have different classifications. The 

“secure path” provides a trusted path from the user to the kernel.  

The KSOS NKSR (Non-Kernel Security Related) software consists of four 

modules: Secure User Services, System Operation Services, System Maintenance 

Services and System Administration Services. The Secure User Services module 

initializes the system, creates and destroys user environments, manages authentication of 

users to the kernel through login and authentication of the kernel to the user through a 

trusted path. System Operation Services support printing, mounting of file systems, 

network connections, and a UNIX Directory Manager (UDM). System Maintenance 

Services include a Storage Consistency Check, Directory Consistency Check, and File 

System Dump/Restore that provide file system maintenance. The System Administration 

Services include User Registration and Removal, System Profile and Maintenance and 

Audit Capture Process that support the administration of a multilevel secure system.  

The KSOS KIP (Kernel Interface Package) is a set of functions that 

implement the system calls provided by UNIX. Applications written for UNIX can be 

migrated to the KSOS environment with little or no modification. Performance 

comparisons of applications running on UNIX, in the KIP, and natively in KSOS showed 

that applications written for the KSOS environment had better performance than UNIX 

applications running the KIP. Although the KSOS KIP provided some degree of binary 

compatibility with UNIX systems, applications ported to KSOS from UNIX did not 

perform as well as those written specifically for the KSOS environment.   
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  c. The Multics Redesign Project 

In 1974, Michael Scroeder, David Clark and Jerome Saltzer [SCS77] 

proposed a restructuring of the Multics operating system to address two security issues. 

First, Multics had been written by hundreds of programmers and was deemed too large to 

be verified. Second, the system was not designed to enforce a specific security policy; its 

mechanisms were somewhat ad hoc. They had two goals: to simplify the operating 

system so it would be verifiable and to implement security functions specified in a formal 

security policy. To determine what modules were required in the security kernel and 

which could be implemented outside the security kernel, type extension [JAN76] was 

applied to the modules. Each module had a well-defined interface, modules were 

analyzed for dependencies and the modules were then organized into a layered structure 

free from dependency loops. 

Eventcounts [REED79] were used to synchronize communication between 

confinement layers while preserving the information flow allowed by the security model. 

Mutual exclusion techniques such as monitors and semaphores impose a total ordering on 

processes within a system while eventcounts establish a relative ordering of events. An 

eventcount is an integer variable with an advance primitive, which increments the 

eventcount, and await and read primitives, which return the value of the eventcount. A 

process can be assigned signaler privileges, which enable access to the advance 

primitive, or observer privileges, which enable access to the read and await primitives for 

an event count.  This separation of privileges allows only authorized signaler processes to 

signal information to observing processes, a feature that is not available through the use 

of semaphores. Eventcounts can be used to avoid covert channels since the signaler does 

not require a reply. 

d.  SCOMP  

The Secure Communications Processor (SCOMP) developed by 

Honeywell [FRA83] implemented the hardware while the SCOMP Trusted Operating 

Program (STOP) implemented the software portions of a reference monitor 

implementation.  SCOMP was specifically designed to be the communication processor 

for the mainframe Multics redesign just described above. SCOMP was the first system to 
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be certified as Class A1 [DOD85] by the DoD Computer Security Evaluation Center 

(comparable to Common Criteria EAL7 [CC99]).  

The SCOMP hardware consisted of a modified Honeywell Level 6/DPS 6 

processor and a Security Protection Module (SPM). The SPM is a hardware layer 

between the modified processor and the rest of the system, implementing the 

completeness and isolation requirements of the reference monitor. The SPM uses virtual 

addresses and a descriptor base root (DBR) to mediate all access requests. “The DBR 

points to the memory and I/O descriptors for the resources available to the process.” The 

SPM uses the DBRs for memory and I/O mediation. Since the I/O mediation is done in 

the SCOMP hardware, I/O device drivers do not need to execute with the highest 

privilege level (Ring 0) and can therefore be outside the kernel, reducing its size and 

complexity. The SPM was implemented mainly to improve performance by 

implementing mediation mechanisms in hardware. It does not require all descriptors to be 

pre-loaded and also includes a Virtual Memory Interface Unit (VMIU) which caches 

recently used memory descriptors [FRA83].  

The STOP operating system consisted of three components: the security 

kernel, the trusted software, and the SCOMP Kernel Interface Package (SKIP) as 

illustrated in Figure 3. The security kernel is the reference monitor implementation and 

handles process management, memory management, interrupt management, and auditing. 

Each subject and object in the system has a unique access label consisting of security and 

integrity levels and category sets that is static for the life of the entity. The trusted 

software provides three types of services: trusted user services, trusted operation services 

and trusted maintenance services. Trusted user services (Ring 1) are used to initiate a 

processing environment for the user at a particular security level and allow the user to 

change her password. Trusted operation services initialize the system to a secure state and 

ensure that the secure state is maintained. Trusted operation services initialize devices, 

create the audit files, load secure processes, and allow the system operator to set the 

system clock, shut down the system, swap audit files, and modify devices. Trusted 

maintenance services are provided to the administrator to initialize, verify the consistency 

of, and repair a kernel file system. Database management facilities are also included to 

allow the maintenance of the “access authentication database, the group access 
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authentication database, the terminal configuration database, the security map and the 

mountable file system database.” The SKIP provides a hierarchical file system, process 

control mechanisms, and I/O device support capabilities to the user. Most SKIP functions 

execute in Ring 2 and are mapped into the user’s address space to reduce overhead, while 

another library of SKIP routines executes in Ring 3 [FRA83].  

 

 

 

Figure 3.   STOP Privilege Rings After [XTS99] 
 

The security kernel software was formally verified through the 

Hierarchical Development Methodology with the FTLS written in Special [SIL83]. The 

trusted software was verified using the Gypsy methodology [CHE81]. Development of 

SCOMP was also “tightly controlled” to ensure that the implementation code 

corresponded with the design documentation. “The formal review by the DoD Computer 

Security Center was augmented by NAVELEX [the Navy Electronics Systems 

Engineering Center] reviews during development [FRA83].” 

e.  The NPS SASS Project 

The Naval Postgraduate School Secure Archival Storage System (SASS) 

project [SCH83] was the first security kernel implemented on a commercial processor 

that was not expressly designed to support a security kernel. The goal of the SASS 

project was to illustrate the techniques for acceptable performance in a security kernel 
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designed for ease of verification.  It should be noted that SASS was a research project for 

use to support graduate student instruction and to widely illustrate key engineering 

techniques through openly publishing its design and source code.  As such, it was not 

intended to be a complete system that could be productized or evaluated as meeting all 

the requirements for verified protection. The system demonstrates the security 

engineering required for the construction of secure systems. The project followed a top 

down design and bottom up implementation approach.  The system was divided into 

hierarchical modules providing increasing operating system capabilities. This structure 

allowed the modules to be developed independently and implements the design technique 

of information–hiding with no global data structures. Overall, “the implementation 

demonstrated the ability of a modern microcomputer to effectively support the security 

kernel approach.”  

There are three layers: security kernel, supervisor, and the application 

layer. The security kernel provides mechanisms for mandatory access control as well as 

management of all physical resources.  The security kernel virtualized all resources, 

processors, storage, I/O, processors, segments, and devices. The supervisor uses these 

abstractions provided by the kernel to provide operating system functions, such as a file 

system and implements discretionary access control mechanisms. Hardware enforced 

execution domains separate each layer, providing isolation of the security kernel. The 

SASS modules are able to support several policies with only one module implementing 

each policy. Every subject and object is assigned a mandatory security label that is 

recognized by only one module in relation to the specific policy implemented by that 

module.   

There are five layers within the security kernel: the gate keeper, segment 

and event managers, traffic controller, memory manager, and inner traffic controller. The 

gatekeeper implements the completeness property of the reference monitor, it handles any 

call to the kernel made by a supervisor or application level process. The segment and 

event managers handle all MAC access requests, and support creation and deletion of 

segments. The traffic controller uses event counts and sequencers to provide interprocess 

communications. The memory manager manages physical memory through segment 

descriptors and “ensures that only shared segments are in global memory” to prevent 
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covert channels. The inner traffic controller manages the virtual processors by providing 

synchronization mechanisms between virtual processors. 

f. The GEMSOS Security Kernel 

The GEMSOS security kernel [SCH85] [GEMSOS] was designed to meet 

two objectives: to implement the Class B3 requirements of the TCSEC [DOD85] and to 

provide a high performance security kernel. GEMSOS utilized a multiprocessor design to 

improve performance and a security policy model that easily represented “the security-

relevant information repositories of the contemplated applications.”  The layered design 

made significant use of the Multics and SASS results identified above. Ultimately, 

GEMSOS was evaluated at Class A1 as a mandatory component under the Trusted 

Network Interpretation [DOD87]. 

The GEMSOS security policy model included the Bell-LaPadula 

confidentiality policy and the Biba integrity policy. Both secrecy and integrity labels 

consisted of a sensitivity level and a set of categories. Program integrity was enforced 

through protection rings provided by the hardware. Each subject and object had an 

associated ring level from 1 (highest privilege) to 7 (lowest privilege) – the 4 Intel x86 

hardware privilege levels were extended to 8 fairly traditional protection rings. For a 

subject to gain access to an object, the object’s ring level must dominate the subject’s 

ring level. 

Secondary storage in GEMSOS was divided into volumes. Each volume 

was composed of segments and each segment belonged to only one volume. A volume 

has minimum and maximum confidentiality and integrity sensitivity levels that define the 

minimum and maximum levels of the segments contained in the volume. Segment names 

were aliased to prevent covert channels. Each segment name consisted of a global name 

relative to a “mentor” segment and a local name that identifies the mentor segment. The 

secrecy and integrity levels of a segment and its mentor must follow the compatibility and 

inverse compatibility properties to prevent covert channels. The compatibility property 

states that the segment’s secrecy level must dominate its mentor’s secrecy level, while the 

inverse compatibility property states that the mentor’s integrity level must dominate the 
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segment’s integrity level. These properties ensure that an authorized process will not be 

barred from accessing a segment because it cannot access the segment’s mentor. 

To achieve the goal of a high performance security kernel, the GEMSOS 

kernel considered several design factors impacting performance. Security kernels are 

usually written in a strongly typed high-level language to support verification. 

Unfortunately, these languages may produce inefficient code. This is a side effect of 

language choice, however, and not a result of the choice to implement security. Security 

kernels built on hardware that lacks features for “…process management and switching, 

memory segmentation, Input/Output mediation, and execution domains” will require 

additional processor time to provide these services in software. All of these features are 

provided by Intel x86 processors, on which GEMSOS was built.  

The use of multiprocessing in GEMSOS introduced new challenges to the 

development of a security kernel. Bus contention is a potential problem in multiprocessor 

systems, but the use of virtual, segmented memory allowed the GEMSOS kernel to 

determine which segments were shared and writeable (and necessary on the global bus) 

and which segments could be located in processor-local memory. Other systems built on 

a single processor typically implemented the security kernel as a single critical section. In 

a multiprocessor system, this introduces a degradation of service which increases as the 

number of processors increase. Each processor must wait while one processor finishes a 

call to the kernel. GEMSOS divided the kernel into several critical sections to allow 

significant simultaneous execution in the kernel.   

g. The VAX VMM Security Kernel 

Work on the VAX Virtual Machine Monitor (VMM) [KAR91] security 

kernel began in 1981 with five goals: to meet the Class A1 assurance requirements 

specified in the TCSEC [DOD85], be able to run on commercial hardware, to support 

existing applications, “provide acceptable performance,” and be a commercially viable 

product. Security was one of the primary goals of the project and the kernel was built to 

enforce a policy including both mandatory and discretionary access controls.  The layered 

design made significant use of the Multics and SASS results identified above.  
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A VMM approach was chosen for two reasons: the desire to provide 

support for existing software and to minimize development and maintenance costs. A 

VMM is not a general-purpose operating system; subjects are virtual machines and 

objects are virtual disks. The VMM exports an abstraction of the hardware that is “not 

subject to frequent change.” A virtualization must address sensitive instructions, ring 

compression, I/O emulation, and self-virtualization.  In this case sensitive means that a 

“privileged state of the processor” is accessed and the virtualization must trap when a 

sensitive instruction is called or an unauthorized subject attempts to access sensitive data. 

Extensions were added to the VAX architecture to allow virtualization because there 

were sensitive instructions and data structures that were unprotected. Since VMS uses all 

four VAX protection rings the protection rings were virtualized through mapping both the 

VM Executive and VM Kernel to the real Executive ring. No virtual machine ever runs in 

real Kernel mode. Extensions were also added to the VAX architecture to allow hiding of 

ring numbers from the VM’s operating system. The compression of rings does not affect 

the isolation of the kernel or the VM but does reduce the robustness of the system against 

buggy executive mode processes. To facilitate the typically difficult endeavor of I/O 

emulation in VM systems, the VAX implements a “specialized call mechanism” which 

reduces the number of kernel traps necessary for I/O emulation. This interface required 

the development of a “trusted virtual device driver” for each supported operating system, 

a matter of only a “small number of engineer-years.” “Self-virtualization is the ability of 

a virtual-machine monitor to run in one of its own virtual machines and recursively create 

second-level virtual machines.” Since self-virtualization is useful mainly for developing 

and debugging and a user interface for self-virtualization would add complexity to the 

kernel, user support for self-virtualization was not implemented. 

Usability was a primary goal of the VAX system but a user interface 

typically introduces significant complexity and is difficult to verify. To address this 

problem, two command sets were implemented: Secure Server Commands and SECURE 

commands. Secure Server commands provide a user interface to the kernel via a trusted 

path. The SECURE commands are the system management utilities. There are two types 

of SECURE commands: VM SECURE, which run in the context of the VM, and User 

SECURE, which are executed by the Secure Server. Facilities were implemented to 
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provide confirmation that an authorized user and not malicious code issued each 

command, the command was not modified in transit, and the command was entered into 

the audit log. This command confirmation was intended to reduce complexity by 

“eliminating need for a complex parser within the TCB” but “introduced a form of 

asynchronous communication… that was even more complex than a parser would have 

been.” A menu interface and facilities for “precompiled scripts would have been simpler 

that the asynchronous approach.” 

Significant software engineering efforts were made toward reducing 

complexity of the VAX VMM. The developers wanted a strongly typed programming 

language with a quality compiler. Initially PL/I was chosen but the typing supported was 

not satisfactory so PASCAL was also used. However, the developers found that using 

two programming languages added complexity to the development process and it would 

have been better to stay with the original language for simplicity. Modules identified as 

“performance-critical” were rewritten in assembly language. The developers practiced 

“defensive coding” and avoided the use of global variables. Automated (DEC Module 

Management System) and manual techniques (visual inspection) implemented layer 

protection checks.  

All design and code changes were reviewed against mandatory guidelines 

and discretionary guidelines for the consistency of design and code. Each layer was 

assigned a member of the development team to act as “owner” who was “responsible for 

the quality of that layer…[and] participated in the reviews.” Interlayer problems were 

analyzed as well as “readability, clarity, security, performance, elegance and adherence to 

[design and code] guidelines.” Configuration management was maintained for “design 

documents, trusted kernel code, test suites, user documents, and verification documents.” 

Security reviews were used to check code against requirements and for consistency. 

Robustness was purposely not included in the VAX VMM design in order 

to keep the complexity of the security kernel to a minimum. It was designed to be a fail-

secure mechanism that would crash if any fault occurred. However, due to the “strict 

software engineering discipline” the system was surprisingly robust and able to support a 
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“heavy production load of real users” for “nearly three weeks” which was “unheard of in 

field test versions of brand new operating systems.”  

The VAX VMM had a layered design, which reduced the number of 

dependency loops in the system and allowed each layer to be tested separately. There are 

16 layers; each layer is functionally dependent on only the abstraction of the layers below 

it. Event counts were used for interprocess communication. Demand paging was not 

implemented, which “reduces kernel complexity and improves performance at the cost of 

limiting the number of simultaneously active virtual machines.” The system was formally 

specified in the Formal Development Methodology (FDM) specification language, Ina Jo, 

and had a TLS, FTLS, and DTLS. The VAX kernel was useable and provided adequate 

performance to support its own development.  

h. The Boeing MLS LAN 

The Boeing MLS LAN [BOE91] was developed by Boeing’s Defense and 

Space Group and evaluated as Class A1 of the Trusted Network Interpretation [DOD87]. 

The security policy model of the MLS LAN includes mandatory confidentiality and 

integrity policies as well as a discretionary access control policy. Datagrams, 

connections, sessions, video circuits, and users 1 have sensitivity labels consisting of 

security and integrity components. Both the security and integrity components support 8 

levels and 256 categories. Users have a maximum and default label; all devices have a 

maximum and minimum label, except for video receivers and serial connections, which 

have only one label. The Formal Top Level Specification of the system was written in Ina 

Jo and a strict configuration management plan was implemented. The system was 

analyzed for covert channels through informal and formal (the Flow Table Generator 

(FTG) developed by MITRE [MIL79]) methods. The MLS LAN includes mechanisms to 

support the fail-safe property.  

The main component of the Boeing LAN is the Secure Network Server 

(SNS), which consists of a chassis with slots for up to eight processors, a system memory 

card, and optional video cards. The processor in the highest priority slot is the SNS 

processor (SNSP). The rest of the processor slots are used for Device Interface Processors 

                                                 
1 One can presume that this means “processes” 
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(DIPs) for each user interface. There are three possible DIP types: host DIP for Ethernet 

interfaces, serial DIP for RS-232 serial interfaces, and terminal DIP for terminals. The 

SNS provides a serial multiplexing and terminal switch service, a serial to TELNET 

gateway service, a write-up connection service, an IP datagram service, inter-terminal 

message service, an audit server and an analog circuit-switching service.  

The reference monitor abstraction is implemented in an NTCB (Network 

Trusted Computing Base). “The size and complexity of the NTCB has been minimized 

by placing the bulk of the protocol processing software (Telnet and TCP) outside the 

NTCB [BOE91].” The software modules of the SNS System (see Figure 4) included in 

the NTCB are the Executive, the Network Interface Software (NI), the SNS Management 

Software (SM), the Management Interface Software (MI), the Serial Communications 

Software (SC), the Host Communications Software (HC) and the DIP Manager Software 

(DM). The Executive is included on all processors of the SNS and provides services 

including task management and inter-task communication, segment descriptor 

management and processor initialization. The Network Interface Software runs on the 

SNSP and facilitates secure communication between SNSs in the SNS System through 

the enforcement of MAC (mandatory access control) on packets and trusted multiplexing, 

demultiplexing and addressing. The SNS Management Software executes on the SNSP 

and provides a Network Management Workstation locator service, an SNS initialization 

service, collection and distribution of audit data, SNS initialization services and MAC 

switching on circuit switched channels. The Management Interface Software (MI) 

provides an interface to the Network Management Workstation and the Audit Server. The 

Terminal Communications Software runs on a terminal DIP and provides inter-terminal 

message (ITM), Telnet sessions, and user identification and authentication services. The 

Serial Communications Software executes on a serial DIP and handles the establishment 

and termination of Telnet sessions, MAC on sessions as well as startup and shutdown of 

DIPs. The Host Communications Software resides on a host DIP and provides the Telnet, 

TCP and UDP interfaces. Each DIP includes a DIP Manager, which provides the 

interface between the Network Management Workstation and the Host Communication, 

Terminal Communication, and Serial Communication Software.  
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The SNS was built for the iAPX 286, which has 4 privilege levels; level 0 

is the highest privilege, level 3 the lowest privilege. The ROM loader executes in level 0; 

the Executive executes at level 1; the Executive monitor, DIP Manager, HC, MI, NI, SC, 

SM, TC, and UDP execute in level 2; untrusted tasks execute in level 3. 

 

 

 

Figure 4.   The MLS LAN NTCB After [BOE91] 
 

D. SUMMARY 

This chapter presented the properties, structural techniques, design principles, and 

several examples of projects leading to or direct examples of high assurance systems. In 

order to gain assurance that the system is free from subversions, such as the one 

demonstrated in this thesis, it must include a security kernel with verified protection 

based upon a security policy model and this implementation must be formally and 



35 

informally mapped to this policy. The security kernel must be complete, isolated and 

verifiable. These properties are achieved through process isolation, modularity, layering, 

data hiding, and abstraction, effective use of hardware, applying the principle of least 

privilege, providing a well-defined interface to the security kernel and through 

minimizing the complexity of the security kernel. The design should embody the 

principles of economy of mechanism, complete mediation, least privilege, fail-safe 

defaults, open design, usability, least common mechanism and separation of privilege. 

The remaining chapters will describe a subversion of an operating system that was 

possible because the system was not built to implement a specific security policy model 

with these properties, structural techniques, and design principles. Because the techniques 

for construction of a high assurance kernel were never made available to the public due to 

either the constraints of the research projects or the proprietary nature of the commercial 

efforts, a project at the Naval Postgraduate School [IRV03] is underway to construct a 

high assurance kernel and make all aspects of its development available. 
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III. IPSEC 

A.  INTRODUCTION 

Internet Protocol Security (IPSec) was developed by the IETF (Internet 

Engineering Task Force) to provide a layer of security between the Network and 

Transport layers of the ISO (Internet Standards Organization) OSI (Open Systems 

Interconnect) model [RFC2402], [RFC2406], [RFC2407], [RFC2408], [RFC2409]. The 

security properties provided by IPSec are: non-repudiation, anti-replay, integrity, 

confidentiality and authentication. Non-repudiation mechanisms allow the origin of the 

message to be attributed to exactly one sender. The sender cannot deny that she sent the 

message. Anti-replay mechanisms ensure that a packet is demonstrably unique. This 

prevents an attacker from capturing a packet and re-submitting it to gain unauthorized 

access to information. Integrity mechanisms protect data from unauthorized modification. 

Confidentiality mechanisms (encryption) protect data from unauthorized disclosure.  

Authentication mechanisms verify the identity of the message sender.  

The IPSec implementation is an attractive target for attackers due to the security 

properties that it provides. Data that is protected by IPSec is probably sensitive and worth 

trying to intercept. This chapter describes the IPSec architecture and the Windows XP 

implementation of IPSec. Chapter V will describe an attack on IPSec in Windows XP 

utilizing the subversion artifice.  

B. IPSEC ARCHITECTURE 

1. IPSec Protocols 

There are two base protocols in IPSec: Authentication Header (AH) and 

Encapsulating Security Payload (ESP). These protocols each provide different security 

properties to different parts of the packet. They can be used separately or in conjunction 

and in either of two modes: Transport mode or Tunnel mode. Transport mode is the more 

commonly used and is intended to provide protection of the upper layer protocols 

between two hosts. Tunnel mode protects the IP layer portion of the packet and is usually 

employed to protect traffic between gateways or a server and a gateway.  
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a. Authentication Header 

The Authentication Header (AH) provides the properties of authentication, 

integrity, and anti-replay for the whole packet, but does not provide confidentiality. The 

AH is added between the Layer 4 (Transport – TCP/UDP) header and the Layer 3 

(Network - IP) header (See Figure 5). 

 

 

 

Figure 5.   Authentication Header From [W2KRK] 

 

 The AH contains the fields: Next Header, Length, Security Parameters 

Index (SPI), Sequence Number, and Authentication Data. The Next Header is an 8-bit 

field indicating the type of data in the Application Data field by its protocol number 

defined by the Internet Assigned Number Authority (IANA) in the current Assigned 

Numbers database (www.iana.org.)  The Length field is an 8-bit field identifying the 

length of the AH in 32-bit words. The Security Parameters Index (SPI) is used to 

determine the correct Security Association (SA -- see the Internet Key Exchange Section 

B.3.b). The Sequence Number is a 32-bit number that starts at 1 and monotonically 

increases for each packet sent with a specific Security Association. If a packet is received 

containing a Sequence Number that has already been received it is dropped. The 

Authentication Data field is a variable length field containing the Integrity Check Value 

(ICV), which is a hash checksum. In Transport Mode, the ICV is a checksum computed 

over all fields of the packet that do not vary in length (see Figure 6.)  

 In Tunnel Mode, the AH separates the IP addressing information into an 

Outer (New) IP Header and an Inner (Original) IP Header. The Original IP Header 
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specifies the true destination and source information and the New IP Header contains the 

address information of security gateways. The entire packet is signed (Figure 7). 

 

 

 

Figure 6.   AH Transport Mode From [W2KRK] 

 

 

 

Figure 7.   AH Tunnel Mode From [W2KRK] 

 

b.  Encapsulating Security Payload 

The Encapsulating Security Payload (ESP) provides the properties of 

confidentiality, authentication, integrity, and anti-replay. The ESP inserts an ESP Header 

between the Layer 3 and Layer 4 headers, as well as an ESP Trailer and ESP 

Authentication information at the end of the IP packet (Figure 8). Unless tunneling is 

employed, ESP protects only the Application Data (IP payload), not the IP Header.  

The ESP Header contains a Security Parameters Index and a Sequence 

Number identical to the AH. The ESP Trailer contains Padding, Padding Length and 

Next Header Fields. The Padding field of the ESP Trailer is an optional field that can 

vary in length from 0 to 255 bytes. It is used to align the data with the block size of the 

encryption algorithm. The Padding Length field specifies the length of the Padding field. 

The Next Header field of the ESP Trailer identifies the type of data in the Application 

Data field. The ESP Authentication Data is a variable length field containing an Integrity 
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Check Value (ICV) calculated over the ESP Header, the Application Data and the ESP 

Trailer, and a message authentication code (MAC) (see Figure 9). 

 

 

 

Figure 8.   ESP Packet From [W2KRK] 

 

 

 

Figure 9.   ESP Transport Mode From [W2KRK] 

 

The difference between Transport and Tunnel Modes in ESP is the 

addition of the New IP Header and the encryption of the Original IP Header in Tunnel 

Mode. Unlike AH, the New IP Header in ESP Tunnel Mode is not signed (see Figure 10). 

 

 

 

Figure 10.   ESP Tunnel Mode From [W2KRK] 
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3.  IPSec Components 

The components of the Windows XP implementation of IPSec are the Policy 

Agent, Internet Key Exchange (IKE), Key Protection, and the IPSec Driver. These 

components collaborate to achieve the protection specified in the IPSec Policy. 

a. Policy Agent 

The Policy Agent (Figure 11) acquires the assigned IPSec Policy from the 

Security Policy Database (SPDB), which in Windows XP can be an Active Directory or 

the local registry. The Policy Agent then forwards the IP Filters specified by the assigned 

policy to the IPSec Driver and the authentication and encryption settings to the Internet 

Key Exchange component. Filter entries can specify that packets be blocked, permitted or 

secured based on the packet’s source, destination and protocol. The Policy Agent polls 

the SPDB at system start time and (if the host is connected to a domain) at the default 

Winlogon polling interval and any interval specified in the IPSec policy.  

 

 

 

Figure 11.   IPSec Policy Agent From [W2KRK] 

 

b. Internet Key Exchange 

Internet Key Exchange (IKE), a combination of the Internet Security 

Association Key Management Protocol (ISAKMP) and the Oakley Key Determination 

protocol (Oakley), is the method through which Security Associations (SAs) are 

 



42 

established between two communicating hosts. An SA “is a set of policy and key(s) used 

to protect information” [RFC2409].  In the Windows XP implementation of IPSec, IKE 

negotiates the SAs in two phases: Main Mode (or Phase 1) and Quick Mode (or Phase 2) 

[CG02].   

(1) Main Mode. Main Mode negotiation results in an ISAKMP, or 

Phase 1, SA. There are three steps to Main Mode: Negotiation of the protection suite to 

be used, Diffie-Hellman [DIFF76] exchange of public keys, and Machine-based 

Authentication. Protection suites include the encryption and integrity (hash) algorithms, 

authentication methods, and Diffie-Hellman groups supported by each host. Microsoft 

Windows XP supports the protection suite attribute values specified in Table 1. 

 

Attribute Attribute Value 

Encryption Algorithms DES, 3DES 

Integrity Algorithms MD5, SHA-1 

Authentication Methods Kerberos, Preshared Key, PKI Certificate 

Diffie-Hellman Groups Group 1 (768-bit), Group 2 (1024-bit) 

 

Table 1. Main Mode Protection Suite Attribute Values After [CG02] 
 

 

The Diffie-Hellman exchange results in each communicating host 

holding a public key. The IKE module then uses this information to generate a shared 

master private key that is used to protect the authentication step and Quick Mode 

negotiations. 

Windows XP provides three methods of machine-based 

authentication (the user is not authenticated through these methods): Kerberos, PKI 

(Public Key Infrastructure) Certificates, or Preshared Keys. Kerberos is the default and is 

mainly used for “client-to-server IPSec machine authentication inside the corporate 

network where clients and servers are members of…mutually trusted domains [CG02].” 

The IKE component uses the CryptoAPI to verify the certificates in PKI Certificate 
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authentication. Preshared Keys are stored in clear text accessible to administrators and is 

not recommended for a production environment [WEB3]. 

(2) Quick Mode. Quick Mode negotiation produces two IPSec, or 

Phase 2, SAs: one for inbound traffic and one for outbound traffic. Quick Mode 

negotiation is protected by the ISAKMP SA from Main Mode and is executed after Main 

Mode negotiation or when an IPSec SA expires [CG02].  There are three steps in Quick 

Mode negotiation: Policy Negotiation, Session Key Refresh or Exchange, and 

Distribution of the Phase 2 SAs. During the Policy Negotiation step the IPSec protocol 

(AH and/or ESP), the hashing algorithm (MD5 or SHA), and the encryption algorithm 

(DES or 3DES, if applicable) to be used are agreed upon and the two Phase 2 SAs are 

established. If encryption is to be used, the next step is to exchange the session keys or 

refresh the keying material through a Diffie-Hellman exchange. Once the SAs and keys 

have been established, they are distributed to the IPSec Driver together with the Security 

Parameter Index (SPI) of the SAs [W2KRK]. 

c. Key Protection 

Keying material is protected in Windows XP through the following 

mechanisms: Key Lifetimes, Session Key Refresh Limit, Diffie-Hellman Groups, and 

Perfect Forward Secrecy. Key Lifetimes are specified in the IPSec policy by the 

administrator and can be established for both master keys and session keys. Any time a 

new key is generated, a new SA is also generated. Session Key Refresh Limit is enforced 

to protect the confidentiality of the Diffie-Hellman shared secret key, which can be 

degraded through reuse. When the Session Key Refresh Limit is reached, the Diffie-

Hellman keys are re-negotiated. Diffie-Hellman Groups specify the length of the prime 

numbers used as key material in the Diffie-Hellman exchange. Windows XP supports 

Group 1, which protects 768 bits and Group 2, which protects 1024 bits. The larger the 

group, the more difficult it is to break the encryption. Perfect Forward Secrecy (PFS) 

ensures that keying material is only used once and can be set for the master and/or 

session keys. When PFS is enabled for master keys, a new Phase 1 negotiation will occur 

for each new Phase 2 negotiation. PFS for session keys requires less overhead since only 

a new Phase 2 negotiation is initiated [W2KRK]. 
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d. IPSec Driver 

The IPSec Driver (ipsec.sys) monitors all outgoing packets and compares 

them to the IP Filter List it received from the Policy Agent (see Figure 12.) If the filters 

indicate that a packet requires security, the IPSec Driver invokes the IKE component to 

determine the appropriate Security Associations. Once the IPSec Driver receives the 

outbound Phase 2 SA from the IKE component, it looks up the outbound SA in the 

Security Association Database (SADB) and inserts the Security Parameter Index (SPI) 

into the IPSec protocol header. The Driver then hashes and encrypts the appropriate fields 

of the packet and forwards the packet on to the IP layer to be sent out on the network. 

When a packet protected by IPSec is received the IPSec Driver queries the 

IKE component for the session key, SA and SPI. The Driver then looks for the 

destination address and SPI of the SA in its SADB. The packet is then hashed to verify its 

integrity and decrypted if necessary. Once the packet is decoded it is forwarded to the 

TCP/IP driver and finally to the appropriate application. 

 

 

 

Figure 12.   IPSec Driver From [W2KRK] 
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4. The IPSec Process 

Figure 13 illustrates how the components of the Windows XP implementation of 

IPSec work together to provide the security properties specified in the IPSec Policy.  

When a user, Alissa, on Host A sends a message which matches an IPSec filter for 

security to a user, Brandy, on Host B, the IPSec Driver on Host A invokes the IKE 

component on Host A to negotiate the SAs with the IKE component on Host B. The IKE 

components on Host A and Host B establish a Phase I SA and a shared master key. Then 

the Phase II SAs are negotiated and distributed to the SA Database (SADB) used by the 

IPSec Drivers on each computer. The IPSec Driver on Host A then uses the newly 

established outbound Phase II SA to protect Alissa’s message and forwards the packets to 

the Network layer to be sent to Brandy on Host B. When Host B’s Network layer 

receives the packets, they are forwarded to the IPSec Driver, which verifies the security 

of each packet by checking the signature and decrypting the packet if necessary. The 

IPSec Driver then sends the packet to Host B’s Transport Layer to be delivered to the 

application being used by Brandy. [W2KRK]  

 

 

 

Figure 13.   The IPSec Process From [W2KRK] 

 

C. SETTING UP IPSEC IN WINDOWS XP 

Now that the architecture and implementation of IPSec has been explained, we 

are ready to set up an IPSec connection. The tools used to configure and trouble shoot an 

IPSec session [WEB2] as well as step-by-step instructions for establishing the peer-to-
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peer IPSec connection [CG01] used to demonstrate the IPSec attack described in Chapter 

V are provided in this section. 

1. IPSec User Tools 

a. Configuring an IPSec Policy 

There are two utilities available for the configuration of IPSec policies in 

Windows XP: the IPSec Security Policies snap-in for MMC and IPSecpol.exe. The IPSec 

Security Policies snap-in for MMC is included in the Local Security Policy MMC or can 

be accessed from Start/Run/secpol.msc. Key Exchange settings, IP Filters, Packet 

Security settings, and Authentication methods can be configured and policies created, 

verified, exported or imported through the snap-in. IPSecpol.exe is a command line tool 

for creating IPSec policies instead of using the IPsec Security Policy snap-in for MMC. 

b. Testing an IPSec Connection  

IPSec connections can be tested with Ping or Netdiag. Ping can be used to 

establish an IPSec session if ICMP traffic is allowed in the policies. Netdiag supplies 

status information and can run diagnostic tests on networking components.  

c. Monitoring IPSec Connections 

The IP Security Monitor snap-in, Event Viewer, IPSeccmd.exe, and 

Network Monitor are used to monitor IPSec connections. The IP Security Monitor snap-

in for MMC displays the Main Mode and Quick Mode SAs, and logs connection 

information.  Some IPSec activities are saved in the Windows log files that can be viewed 

with the Event Viewer. Policy Agent and IPSec events are entered in the System Log; 

Oakley events from the IKE component events are entered in the Application Log; and 

ISAKMP and SA events appear in the Security Log if logon auditing is activated. 

IPSeccmd.exe is a command line utility that displays IPSec filter information as well as 

any pre-shared keys used and usage statistics. Network Monitor (Netmon) is a packet-

capture tool that will decode ISAKMP, AH and ESP traffic [WEB2].  

2. A Peer to Peer IPSec Connection 

The first step in demonstrating a peer-to-peer IPSec connection in Windows XP 

[CG01] is to verify connectivity between the two hosts by pinging between them. Then 

the IPSec Policy can be configured on each computer and the IPSec connection tested.  
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a.  Configuring the IPSec Policy  

To configure an IPSec policy in Windows XP, first create an IPSec 

console containing the IP Security Monitor Snap-in and the IP Security Policy 

Management Snap-in. From the Microsoft Management Console (Start Run: MMC), 

select File: Add/Remove Snap-in (see Figure 14) and click on the Add button. Choose the 

IP Security Monitor and IP Security Policy Management for this computer (see Figure 

15), then click Close and OK. Save this console for future use. 

 

 

 

Figure 14.   Add/Remove Snap-in 
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Figure 15.   Adding the IPSec Snap-ins 
 

To create a new policy, right click on the IP Security Policies on Local 

Computer Snap-in and select ‘Create IP Security Policy’ (see Figure 16.) Name the new 

policy ‘Subversion’ and make sure that the Activate Default Response check box is not 

selected in the ‘Requests for Secure Communication’ dialog.  
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Figure 16.   Creating an IPSec Policy 

 

Right click on the ‘Subversion’ policy and select Properties. Click the Add 

button on the Rules tab of the Properties dialog box to assign a key and add a filter to the 

policy.  Accept the defaults until you reach the Authentication Method screen. Choose 

‘Use this key to protect the key exchange (preshared key)’ and enter 123456789 as the 

preshared key. Note that this is the least secure of the three authentication methods 

provided by the Windows XP implementation of IPSec but the attack described in this 

thesis does not attack the strength of the encryption keys. On the IP Filter List screen 

choose Add. Name the new filter ‘Subversion Filter’ (see Figure 17). Choose to protect 

all traffic from this computer to the other computer being used in the demonstration.  
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Figure 17.   Creating a new IPSec Filter 
 

b. Testing the Connection 

After both hosts have been configured, test the IPSec connection by 

pinging between them. At first, a series of ‘Negotiating IP Security’ messages will be 

displayed; ping again and the replies should be received successfully. IPSec now protects 

all traffic between the two peers and the connection can be monitored with the tools 

described in Section C.1 of this chapter.  

D. SUMMARY 

This chapter presented the Windows XP implementation of IPSec and provided 

instructions to set up the IPSec connection used to demonstrate the attack on the IPSec 

Driver described in Chapter V. The next chapter will describe the Windows XP 

Embedded architecture and the process of creating Windows XP Embedded run-time 

images.  
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IV. WINDOWS XP EMBEDDED 

A.  INTRODUCTION 

Although the subversion artifice described in this thesis is capable of running on 

Windows NT, Windows 2000 or Windows XP, it is demonstrated on a Windows XP 

Embedded platform. Windows XP Embedded [XPE1] [XPE2] is a “componentized” 

version of Windows XP. The Embedded version has the same binaries as XP, which are 

organized into components. There are over 10,000 XP operating system components 

available to the developer; each defines a capability that a run-time image may require in 

terms of resource files and properties, which are stored in a database. A Windows XP 

Embedded run-time image is created from a configuration, which is a set of components 

and properties. Developers can pick and choose which functionality to include in the 

image by selecting components to include in a configuration. To run an application on 

XP Embedded, it must be packaged in a component to ensure that all components that it 

is dependent on are also added to the configuration. Once a component has been added to 

a configuration, it is referred to as an instance. Typical configuration properties include 

the configuration name, author, and advanced properties such as the target boot drive and 

boot ARC (Attached Resource Computer) path. A Windows XP Embedded image can be 

as small as 5MB. This chapter describes the Windows XP Embedded Architecture and 

how to create a Windows XP Embedded Image. 

B. THE EMBEDDED ARCHITECTURE 

Windows XP Embedded components are stored in a SQL Server database called 

the Component Database. The Component Management Interface is a COM (Component 

Object Model [COM]) server that the XP Embedded Studio tools use to access the 

database. Since the Component Management interface is a COM server, the Windows XP 

Embedded architecture is object oriented. All “configurations, components, instances, 

resources, files, registry entries, and repositories” in the architecture are treated as 

objects. Each component object encapsulates some functionality. A component can be 

defined as a prototype component, allowing other components to inherit its functionality.  
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Figure 18.   The XP Embedded Architecture 
 

Polymorphism in XP Embedded components “…is usually handled with DHTML 

[Dynamic Hypertext Markup Language] configuration and build script [FIN1].” This 
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section describes the architecture of Windows XP Embedded, the tools in the Embedded 

Development Studio and how a run time image is created (see Figure 18 for a graphical 

representation.) There are four tools in the Embedded Development Studio [XPE3] that 

are used to create XP Embedded images: the Target Analyzer [XPE2], the Component 

Designer [FIN3], the Component Database Manager [FIN4] and the Target Designer 

[FIN5]. 

1. Target Analyzer 

The Target Analyzer consists of the Target Analyzer Probe and the Target 

Analyzer Importer. The Target Analyzer Probe (tap.exe or ta.exe) is executed on the 

target machine and produces a listing of all hardware devices on the target in the form of 

an XML based .pmq file (pronounced “pumpkin” [FIN6]). The Target Analyzer Importer 

is a module of the Component Designer and Target Designer. It imports the .pmq file into 

the Designer application to ensure that the component or configuration includes all of the 

resources necessary to support the devices of the target.  

2. Component Designer 

The Component Designer (Figure 19) [FIN3] is used to create custom 

components, such as a component based on the .pmq file obtained by running the Target 

Analyzer on a particular target. These components are stored in Source Level Definition 

(.SLD) XML files that specify the resource files and properties of the component. In 

addition to the prototype component type used in inheritance relationships, components 

can also be defined as macro, end-of-life, opaque, editable, and/or allow multiple type 

components. A macro component defines dependencies on a collection of components 

but has no resources of its own and is commonly used as a design template. An end-of-

life component is a component that has become obsolete and should not be included in 

new configurations but must be retained in the database to support existing 

configurations. End-of-life components can specify which component, if any, replaces it. 

An opaque component does not display its resources in the Target Designer; an editable 

component allows the developer to edit the component settings in the Target Designer. 

By default, only one instance of each component can exist in a configuration. An allow 

multiple component will allow multiple instances of a component in one configuration.  
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Figure 19.   The Component Designer From [XPE2] 
 
3. Component Database Manager 

The Component Database Manager [FIN4] uses the Component Management 

Interface to add new components to the database and display the current components in 

the database. Once a component has been created, its .sld file must be imported to the 

component database using the Component Database Manager. Entities may be deleted 

and the resource file repositories managed from the Component Database Manager.   

4. Target Designer 

The Target Designer (Figure 20) [FIN5] is used to create configurations, which 

are stored in .slx files, and build XP Embedded images from those configurations. 

Components that are available in the Component Database are displayed in the 

component browser and are added to the configuration by dragging them into the 

configuration editor pane. There are several default design templates (macro components) 

available to form the base of XP Embedded configurations: Windows-based Terminal 

Professional, Information Appliance, Basic Set Top Box, Digital Set Top Box, Advanced 
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Set Top Box, Kiosk/Gaming Console, Home Gateway, Retail Point of Sale Terminal, and 

Network Attached Storage. 

Each component has a visibility level property, which is a value from 100 to 

10,000. The Target Designer also has a visibility level and will only display a component 

in the browser if the component’s visibility level is higher than the Target Designer’s 

visibility level. The default visibility level for components is 1000, macro components 

are usually set to 2000, and “hidden” components usually have a visibility level of 500. 

To view all available components in the Target Designer, set its visibility level to 100 

[XPE2]. 

 

 
 
 

Figure 20.   The Target Designer From [XPE2] 
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5. Embedded Enabling Features 

Windows XP Embedded provides several features to enable the building and 

deployment of XP Embedded images: the First Boot Agent (FBA), Enhanced Write Filter 

(EWF), System Deployment Image (SDI), El Torito CD Image Preparation Tool, 

CompactPCI, Message Box Interception, several storage options, Page File Disable, 

BootPrep, and Power Management Application [XPE2]. The enabling features used in 

this thesis are the First Boot Agent, Enhanced Write Filter, and the El Torito CD Image 

Preparation Tool. The FBA runs the first time an XP Embedded image boots and 

performs configuration tasks that cannot be done offline. The EWF allows an image of 

XP Embedded to boot from read-only media by storing any write to the media in a 

memory overlay, which gives the illusion that the media is writable. The El Torito CD 

Image Preparation Tool converts an XP Embedded run-time image to an ISO 9660 file 

used in the creation of a bootable CD-ROM image (see Section C.2.) Bootprep 

(bootprep.exe) modifies the Master Boot Record to point to NTLDR, which is required 

for booting into Windows XP. 

C.  BUILDING AN XP EMBEDDED IMAGE  

There are several deployment options available to developers who wish to create 

Windows XP Embedded images. This section describes how to build images with the 

development environment that was used to demonstrate this thesis. The development 

environment consisted of a system with a 650 MB FAT partition as the XP Embedded 

target partition and a partition running Windows XP Professional (Windows 2000 may 

also be used.) The Windows Embedded Studio was installed on the XP Professional 

partition. To deploy an XP Embedded image it is handy to create a Windows 98 boot 

floppy and copy the contents of the Windows Embedded Utilities folder (C:\Program 

Files\Windows Embedded\Utilities) to another floppy disk. To create a bootable CD 

image, a CD-RW drive and an application that will burn ISO-9660 (the International 

Standards Organization standard for CD file systems) images to CDs (Roxio Easy CD 

Creator was used here) are required. When the Embedded Studio is installed two 

directories are created: an Embedded Data directory and an Embedded Images directory. 

The resource files available to components reside in a shared Repository located in 

C:\Windows Embedded Data. The subverted version of tcpip.sys produced by [LACK03] 
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was inserted into this repository to create a subverted Windows XP image. In addition to 

the Repository, a default image directory is created during installation of the Windows 

Embedded Studio (C:\Windows Embedded Images).  

The Windows XP Embedded home page [XPE1] and the Windows XP Embedded 

Product Documentation [XPE2] were extremely helpful in successfully creating and 

deploying a Windows XP Embedded image.  

1. Creating an XP Embedded Image on a Hard Disk Partition 

a. Prepare the Target Partition 

Create a 650 MB or less active FAT partition. Boot from the Windows 98 

boot floppy and run the Bootprep utility from the utility floppy. Restart into the Windows 

XP Professional or Windows 2000 partition and run the Target Analyzer (Tap.exe) on the 

target partition. The Target Analyzer creates a file called DEVICES.pmq containing a 

listing of the hardware devices on the target. 

b. Create a Customized Component for the Target Device 

Open the Component Designer and import the DEVICES.pmq file created 

by the Target Analyzer; this may take a few minutes. Find Devices in the SLD browser 

(Figure 15) on the left hand side of the Component Designer window and modify the 

Component Properties. For this demonstration, name the component ‘Target Device.’ 

Make the component a ‘Selector Prototype Component’ and save the new component 

definition, this will be an .sld file.  

c. Import the New Component into the Component Database 

Start the Component Database Manager, select Import and choose the .sld 

file created with the Component Designer in step b. The customized component will now 

be available for inclusion in a configuration. 

d. Create a New Configuration in Target Designer 

Open the Target Designer and start a new configuration. The component 

browser lists all the available components. If a specific component does not appear in the 

component browser, try lowering the visibility level. Drag the ‘Target Device’ 

component to the Configuration Editor (Figure 16) to add it to the configuration. Add the 

‘Windows-based Terminal Professional’ component from the Design Templates to the 
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configuration. For this demonstration we are utilizing IPSec; click on the filter icon and 

create a new filter to search for the string ‘IP Security’ and apply the filter. Add the IP 

Security Services component and the ‘IP Security Tools and User Interface Component.’ 

See Table 2 for a listing of all components used in the demonstration configuration. 

 

Component Name 

Target Device 

Windows-based Terminal Professional 

IP Security Services 

IP Security Tools and User Interface 

TCP/IP Utilities 

Other TCP/IP Utilities 

Network Diagnostics 

FAT format 

FAT 

NT Loader 
 

Table 2. XP Embedded Components 
 

Modify the settings of the configuration in the details window to point to 

the appropriate boot drive and boot ARC path. Set the boot partition size to 650 MB (or 

the size of the target partition.) Save the configuration, this creates an .slx file. Choose 

resolve dependencies: this iterates through the chosen components and will automatically 

resolve as many dependencies as possible by querying the Component Management 

Interface for the dependencies listed in Component Database for each component in the 

configuration. Any dependencies that cannot be automatically resolved will appear in the 

Tasks tab of the Output Window (Figure 15). Click on each task and choose a component 

to resolve the dependency. Choose ‘Explorer Shell,’ ‘NT Loader,’ and the appropriate 

language support component when resolving dependencies.  

Find the ‘User Interface Core’ component in the configuration, this was 

automatically added during the dependency check. Check the boxes to ‘Show Control 
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Panel on Start Menu’ and ‘Show My Computer on Start Menu.’ Make sure that ‘Prohibit 

Access to Start Menu’ and ‘Prohibit Access to Hot Keys’ is not selected.  

e. Build the XP Embedded Image 

Select ‘Build’ and specify an image destination folder within C:\Windows 

Embedded Images. Run the dependency check again and resolve any new dependencies. 

Once the build is complete, save the configuration again and exit the Target Designer. If 

you are running Windows 2000, copy the NTLDR and NTDETECT.com files from your 

image into the C:\ directory [XPE1].  

f. Boot to the XP Embedded Image 

To deploy the XP Embedded image, copy the files from the image folder 

to your target partition. Add a line to the boot.ini file (Start\Run\notepad boot.ini) for the 

second partition. Restart and choose your XP Embedded partition from the boot menu. 

The XP Embedded splash screen will appear and the First Boot Agent (FBA) will run; 

this should take a few minutes. After the FBA restarts the system, select the XP 

Embedded image again from the boot menu. If the FBA restarts the system again, check 

the FBALOG.txt file in the image’s FBA directory for error messages.  

2. Creating an XP Embedded Image on a Bootable CD 

Windows XP Embedded includes the El Torito CD Image Preparation Tool to 

create a bootable CD image of an XP Embedded hard disk image. To create an El Torito 

image you will need two blank writeable CDs.  

a. Create an Enable Auto Layout Registry Component 

Create a new component in the Component Designer and name is 

something like ‘EnableAutoLayout.’ Right click on ‘Registry Data’ and choose 

Add\Registry Data. Enter the information in Table 3 into the ‘Add Component Registry 

Resources’ dialog. 

Select the ‘Default’ radio button, save the new .sld file and import the new 

component to the Component Database using the Component Database Manager. 
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Root: HKEY_LOCAL_MACHINE 

Key Name: SOFTWARE\Microsoft\Windows\CurrentVersion\OptimalLayout

Value Name: EnableAutoLayout 

Type: REG_DWORD 

Value: 0 
 

Table 3. Add Component Registry Data 
 

b. Creating an El Torito Configuration 

Open the Target Designer and create a new configuration with the 

following components: 

 

Component Name 

Target Device 

Windows-based Terminal Professional 

IP Security Services 

IP Security Tools and User Interface 

TCP/IP Utilities 

Other TCP/IP Utilities 

Network Diagnostics 

FAT format 

FAT 

El Torito CD 

EnableAutoLayout 

Enhanced Write Filter 

EWF Manager Console Application 

EWF NTLDR 
 

Table 4. El Torito Configuration Components 
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Clear the ‘Start EWF Enabled’ box in the settings of the ‘Enhanced Write 

Filter’ component. The Disk Number should be 0 and the Partition Number should be 1. 

Set the disk image number to 12345678 in the ‘El Torito CD’ component settings. 

Modify the ‘User Interface Core’ component as before. Resolve any dependencies and 

build the image.  

c. Creating the Bootable CD 

Copy the image files to the target partition and modify the boot.ini file to 

include the target partition. Run the HD2ISO utility (hd2iso.exe) to create an ISO image 

of the target hard disk partition.  Select ‘Create an ISO-9660/ELTORITO bootable image 

file’ from the HD2ISO main menu. Set the physical drive to the target hard disk and the 

partition to the target partition. Set the image file path where the ISO-9660 image will be 

created. In the Advanced Options menu, select 80-minute CD as the target media size, 

change the signature to 12345678 (the number entered in the El Torito CD component 

settings), and select the bootable partition. Exit the advanced options menu and select 

‘Create Image’ from the ISO Image menu. Burn the .iso file onto a CD.  

d. Configure the Enhanced Write Filter 

Insert the CD created in step c. and boot to the XP Embedded hard disk 

image. The First Boot Agent (FBA) for El Torito images refers to the image on the CD 

and will reboot the system twice. Once the FBA has finished, boot into the XP Embedded 

hard disk image and run the EWF (Enhanced Write Filter) manager (using commands 

ewfmgr and ewfmgr c:). If the EWF manager produces errors, check the FBA log file 

(FBALOG.txt) for EWF entries.  

e. Create an El Torito CD 

From the XP Embedded partition on the hard disk run Etprep from a 

command prompt (etprep /all). This cleans up after the Enhanced Write Filter and swaps 

the drive letters so that the image runs off of the CDROM. Etprep should reboot the 

system once. Now create another ISO image of the hard disk partition and burn the image 

to a CD.  
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f. Boot From the El Torito CD 

Boot any system from the second CD and verify that the EWF is running 

correctly (by entering ewfmgr C:).  

D. SUMMARY 

This chapter presented the Windows XP Embedded Architecture and Embedded 

Development Studio tools. The environment and process used to create Windows XP 

Embedded Images used in the demonstration of the subversion was described. Chapter V 

will provide the design of the IPSec attack. 
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V. AN IPSEC ATTACK 

A. INTRODUCTION 

This thesis, in cooperation with [LACK03] and [ROG03], demonstrates a 

subversion of the Windows XP Embedded operating system modeled after the 2-card 

loader concept (described in Chapter I.). The subversion is divided into three parts: the 

artifice base described in [LACK03], the link/loader described in [ROG03] and the attack 

described in this thesis. The artifice base is the only part of the subversion artifice that is 

resident in the system. It can be inserted at any phase in the system’s lifecycle. The 

link/loader and the attack are loaded onto a fielded system at a later time. The artifice 

base allocates memory for the link/loader and provides communication facilities that are 

used by both the link/loader and the attack. Once the link/loader is running, it loads the 

attack code into an area of memory that it has allocated separately from the artifice base’s 

memory buffer. 

The artifice base and link/loader set the stage for an attack on any kernel module, 

such as the CryptoAPI. IPSec makes an attractive target since information that users are 

trying to protect is probably worth stealing. In addition, many IPSec implementations are 

employed to protect a wide range of application data. This chapter presents the design 

and implementation of an attack that bypasses IPSec protection but does not exploit an 

existing flaw in the Windows IPSec implementation.  

The development of the IPSec attack assumes that the target device is running a 

version of Windows XP Embedded subverted by the artifice base component and that the 

load address of the Windows XP kernel is known. It is emphasized that assumptions of 

this sort are only for the purpose of simplifying the research setup for this thesis. In a 

more realistic attack by a professional, the artifice base can first be used to support any 

needed “casing” of the target to obtain this sort of information before launching a specific 

attack. The artifice base and link/loader components must run successfully on the target 

before the attack is loaded. It is also assumed that the target device has sufficient excess 

memory to load the attack and that the system includes the IP Security Services 

Component in its configuration. This attack was developed with access to the IPSec 
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binaries and source using readily accessible software tools including: a kernel debugger, 

a text editor, an assembler and a disassembler (see Appendix A for a description of the 

development environment.) Obfuscation of the artifice was not a major design concern 

since the main purpose of this work is to produce an understandable demonstration of 

subversion. 

B. HIGH LEVEL DESIGN 

The attack portion of the artifice consists of attack functions that are loaded on the 

target machine by the link/loader and a set of scripts that control the attack functions. The 

attack patches the function of the IPSec driver that handles the sending of IPSec packets. 

There are several other options for subverting IPSec, such as attacking the keys or the 

cryptography mechanism. Once the attack is activated, the patch makes a copy of every 

packet that is to be sent by the target with IPSec protection and sends it out in the clear to 

be intercepted by the attacker. In practice the attacker would most likely encrypt this data 

with her own cipher since plaintext may arouse suspicion, but this step was excluded to 

simplify the operation of the demonstration.  

The attack works in two phases. In the first phase, the attack queries the kernel for 

the loaded module list to find the load address of the IPSec driver. The load address of 

the kernel must be known, this could be returned as a function of the artifice base. In the 

second phase, the address of the target function is calculated from the load address of the 

driver and passed to the loaded attack through a trigger. The target function is then 

patched with the attack code. Once the attack is activated, all data to be sent over IPSec 

will also be sent in the clear and intercepted by the attacker. 

C. INTERFACE DESCRIPTION 

The attack component must provide a user interface as well as a communication 

interface with the link/loader component from [ROG03] and the artifice base from 

[LACK03].  

1. User Interface 

To run the IPSec attack on a target machine the attacker runs a set of scripts on a 

remote computer that control the artifice. The scripts load the second phase of the artifice 

base, load the attack, set attack triggers, and run each trigger. The artifice base provides 
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the triggering mechanism. A trigger is set associating a function number with the offset 

of a call instruction to an attack function, since the artifice base only sets triggers to a 4 

byte offset. When a trigger packet is received denoting a function number, the artifice 

base will call the offset associated with that function number, which will in turn call the 

attack function. For this attack, triggers will be set for the findModules function, the 

patching function, and the activate/deactivate function. The packets containing data 

exfiltrated by the attack will be captured and displayed by a packet sniffer such as 

Ethereal [ETHER].  

2. Link/Loader Interface 

The binary files of the attack must be sent to the link/loader. The link/loader 

relocates the attack functions to the target machine. Since the link/loader may not be able 

to allocate sufficient contiguous memory, the attack functions refer to a jump table that 

contains the absolute addresses of each attack function. The link/loader completes this 

table when the load addresses of the functions are known. The completed jump table is 

also used to set triggers for the loaded attack functions. 

3. Artifice Base Interface 

The artifice base subverts the TCP/IP driver such that the artifice base intercepts 

malformed UDP packets with a specific bad checksum. The user scripts use a tool such as 

Sendip from Project Purple [PURPLE] to create these packets. The attack functions 

communicate with the artifice base through an internal call to the artifice base’s feedback 

function that is used to send the exfiltrated information as data in ICMP packets.   

D. DETAILED DESIGN 

1. The Attack 

The IPSec attack patches itself into a function that executes every time a packet is 

sent with IPSec protection. Once the target function is patched, it will jump to the attack 

patch code that sends a copy of the packet using the feedback function provided by the 

bootstrap.  

a. Data 

The Attack code was written in assembly with a small memory model. 

The attack functions reference a global data table (Table 5) that contains the jump table 
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and a data table. The jump table contains absolute addresses of the functions provided by 

the attack and is completed by the link/loader once the load address of each function on 

the target device is known. The global data table is used to provide position independence 

to the attack functions. A reference to the artifice base must be stored to allow the attack 

to call the feedback function and access the data in trigger packets. The attack has a 

global status variable that indicates whether the current IPSec packet should be copied 

and sent (activated state) or whether the attack should do nothing (deactivated state). The 

address of the target function is also saved to the global data table for use by all attack 

functions. 

 

Jump Table Find Modules Function Address (requires trigger) 

 Activate/Deactivate Function Address (requires trigger) 

 Patching Function Address (requires trigger) 

 Patch Function Address 

Data Table  Artifice Base Feedback Reference 

 Status Variable 

 Target Function Address 

 Artifice Base Trigger Reference 
 

Table 5. The Global Data Table 
 

b. Functions 

The IPSec attack implements four main functions: a findModules function, 

the patching function, an activate/deactivate function and the actual IPSec attack patch. 

The findModules function (see Table 6) queries the kernel for the loaded module list and 

sends each entry out with the artifice base’s feedback function. The patching function 

(see Table 7) swaps the first few bytes of the target function with an instruction to jump 

to the attack patch and inserts an instruction to jump back to the patched IPSec function 

at the end of the attack patch. The activate/deactivate function (see Table 8) sets the 

value of the global activation status variable, which the attack patch verifies before 

performing any action. If the status is active (the variable is set to “1”), the exploit patch 
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(see Table 9) copies the packet to the artifice base’s feedback buffer. Once the packet is 

copied, the patch calls the artifice base’s feedback function to exfiltrate the packet.  

The findModules function (Table 6) calls the ExAllocatePool and 

NtQuerySystemInformation functions exported by the kernel (ntoskrnl.exe). The virtual 

address of the kernel must be known in order to determine the address of these two 

functions. ExAllocatePool allocates a buffer that is passed to NtQuerySystemInformation 

along with the type of information requested. In this case we are interested in the loaded 

module list. Once the module list is returned in the buffer, the findModules function sends 

each entry of the loaded module list out with the artifice base’s feedback function. 

 

Function Name: FindModules 

Description: Calls the functions ExAllocatePool and 
NtQuerySystemInformation to exfiltrated 
the loaded module list 

Executed by: Trigger 

Preconditions: The load address of ntoskrnl.exe is known 

Postconditions: The load address of ipsec.sys (and all other 
kernel modules) is known 

 
Table 6. Find Modules Function 

 

The target IPSec function is at a set offset from the start of the IPSec 

driver, which is returned by the findModules function. This address is computed and sent 

in the trigger to the patching function, which saves it to the global data table (Table 5.) 

The patching function (Table 7) stores the first 9 bytes (three instructions) of the target 

function into the first 9 bytes of the patch function and sets the first instruction of the 

target function to jump to the address of the patch function. The address of the patch 

function is retrieved from the global data table. The last 7 bytes of the patch function are 

an instruction to jump back to the instruction in the target function following the three 

that were displaced. 
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Function Name: Patching  

Description: Patches the target function with the attack 
patch 

Executed by: Trigger 

Parameters: The address of the target IPSec function 
(passed in the trigger) 

Preconditions: The find modules function has executed 
and the address of the target function has 
been calculated  

Postconditions: The target function is patched 

 

Table 7. Patching Function 
 

The activate/deactivate function (Table 8) is executed by the bootstrap in 

response to a trigger that is set by the user scripts. It sets the status variable to the value 

sent in the data field of the trigger packet (0 for deactivate, 1 for activate). See Section 

D.2 of this chapter for a description of the packet fields.  

 

Function Name: Activate/Deactivate  

Description: Sets the value of the status variable 

Executed by: Trigger 

Parameters: Status value (passed in trigger) 

Preconditions: Attack has been patched into target, status 
is deactivated by default 

Postconditions: The status variable is set to the value in the 
data field of the trigger packet 

 
Table 8. Activate/Deactivate Function 

 

The patch function (Table 9) performs the actual attack. The pointer to the 

packet is retrieved from the stack and the clear text data of the packet is copied to the 

artifice base’s feedback buffer. Once the data has been copied, the feedback function is 

called to exfiltrate the data. The patch jumps back to the target function and IPSec 

communication on the subverted machine continues without interruption. 
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Function Name: Patch 

Description: Copies the contents of the IP packet buffer 
into the artifice base’s output buffer, then 
calls the artifice base’s feedback function 
to exfiltrate the packet 

Executed by: Target Function 

Preconditions: Status is active and the addresses of the IP 
packet buffer and the artifice base’s output 
buffer are stored in the global data table 

Postconditions: The clear text data is exfiltrated and the 
IPSec communication uninterrupted 

 

Table 9. IPSec Patch Function 
 

c. Attack Package 

The link/loader needs to receive the attack and information required to 

link the attack in a recognized format. This attack package contains: the name of the 

executable attack file, the length of the code, and the length of the jump table. 

2. The User Scripts 

The user scripts compose packets with a specific bad UDP checksum that are sent 

to the target machine and interpreted by the artifice base. There are two types of packets 

recognized by the artifice base: a run function packet and a set trigger packet. A run 

function packet (Figure 21) will cause the artifice base to call the address associated with 

the function number supplied in the function number field of the artifice base header. A 

set trigger packet (Figure 22) sets the association of the number supplied in the trigger 

number field with the offset supplied in the Offset/Jump field.  

The artifice base reserves the first three function numbers. Function number 0 

does nothing. Function number 1 denotes the load instruction, which copies the contents 

of the data field (up to the specified length) into the artifice base’s memory buffer at the 

offset specified. Function number 2 specifies the set trigger function, which associates 

the trigger number with the offset in the jump field. For the IPSec attack, triggers will be 

set to run the findModules function, the patching function, and the activate/deactivate 

function. 
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32 bits 

UDP Header 

Source Destination 

Length Bad Checksum 

Bootstrap Header 

Session ID 

(32 bits) 

Feedback 

(1 bit) 

Unused 

(3 bits) 

Function 
Number 

(4 bits) 

Unused

(8 bits) 

Offset 

(16 bits) 

Length 

(16 bits) 

Data 

(variable length) 
 

Figure 21.   A Run Trigger Packet 
 

32 bits 

UDP Header 

Source Destination 

Length Bad Checksum 

Bootstrap Header 

Session ID 

(32 bits) 

Feedback 

(1 bit) 

Unused 

(3 bits) 

Function 
Number 

(4 bits) 

Trigger 
Number

(8 bits) 

Jump 

(16 bits) 

Length 

(16 bits) 

Checksum 

(16 bits) 

Data 

(variable length) 
 

Figure 22.   A Set Trigger Packet 
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3. Viewing the Exfiltrated Data 

To view the data exfiltrated by the attack patch, the attacker uses a packet sniffer 

such as Ethereal [ETHER]. Ethereal allows users to filter by IP address and protocol. The 

artifice base’s feedback function sends ICMP packets, which can easily be located with 

the filters and sorting functions of Ethereal.  

C. FUTURE WORK 

This attack establishes a framework that can be used to attack other kernel 

modules in a subverted operating system. Future work on this attack could include the 

addition of an un-patching function that, when triggered, would reset the target function 

so that it would no longer jump to the attack patch. Some environments (such as military 

applications) may be protected by only allowing inbound communication. The attack 

could be designed to operate without feedback capabilities in this case. The findModules 

function could be modified to only send information on a specific module or to set the 

target function address in the global data table without using the feedback function. The 

findModules function could also be modified to exfiltrate other system information 

provided by NtQuerySystemInformation. Instead of requiring the artifice base to provide 

the load address of the kernel, the attack could make an educated guess and search 

memory for the necessary kernel functions using a pattern matching technique. The 

attack could also be written to search the kernel’s internal data structures directly, such as 

the loaded module list used by NtQuerySystemInformation or the kernel handle table 

[Page 141 of SOL00], to find the load address of the target module. The link/loader could 

be extended to provide persistence of the attack patch between system boots.  

D. SUMMARY 

The artifice base, link/loader and attack components of the subversion 

demonstrate the ability for a mere six lines of code [LACK03] to dynamically load in 

additional malicious code. This is a flexible attack that does not require the attack writer 

to know where the attack code will be loaded in memory on the target device. The attack 

writer also does not need to know what applications will be running on the target 

machine when the artifice base is inserted. The attack demonstrates that the security of 

applications is inconsequential and ineffective if the underlying operating system has 
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been subverted. Since the IPSec encryption mechanism is bypassed, the strength of the 

encryption algorithm is also inconsequential. This attack does not exploit an existing flaw 

in IPSec. Instead, it uses the privileges given to it by the artifice base to modify the 

application to meet the attacker’s objectives.  
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VI. CONCLUSION 

An attack on the Windows XP Embedded operating system implementation of 

IPSec was demonstrated using a dynamic subversion artifice modeled after the 2-card 

loader concept [SCH03]. The attack can be loaded onto a fielded system that has been 

subverted by the six lines of code comprising the artifice base [LACK03], which could 

be inserted into the kernel at any phase in the system’s lifecycle. The attack provides a 

flexible method for the attacker, who may not be the same individual who inserted the 

artifice, to gain total control of the subverted system. Due to the dynamic loading 

property of this subversion, the attacker does not have to decide the aspect of the system 

to be targeted until a time of her choice. Although IPSec was chosen for this 

demonstration, a strategy was presented for the subversion of any kernel module.  

The attack does not exploit an existing flaw in the target module but is possible 

because the artifice base is inserted into the kernel of an operating system for which 

adversaries have access to source code directly or indirectly, e.g., via reverse engineering 

of a normal commercial product distribution. No amount of additive security measures 

would hinder the operation of the subversion artifice since its location in the most 

privileged portion of the system allows all security mechanisms to be bypassed. 

Known methods for developing systems with verified protection so they can be 

independently evaluated to establish that they are free from subversion were discussed 

and several projects that utilized these methods were presented. However, nearly all 

commercial operating systems are currently not developed with these methods, so there is 

no guarantee that they do not currently contain subversive artifacts. In fact, there is 

evidence [THU01] that terrorist groups have recognized the power of subversion attacks 

and have at least attempted their implementation.  
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APPENDIX A: IMPLEMENTING THE ATTACK 

A. INTRODUCTION 

This appendix describes the development and test environments for the IPSec 

attack as well as the implementation of the subversion demonstration. The attack 

component of the exploit was written on a Windows XP platform in assembly language 

using TextPad [TEXT] and assembled with MASM (Microsoft’s Macro ASseMbler) 

[IRVI03].  PEBrowse Interactive [SMIDGE] was used to debug and prepare the attack 

scripts, which use SendIP [PURPLE] to create and send packets to the target computer. 

Once the attack is loaded on the target computer, SoftICE [ICE] (a kernel debugger 

specifically for Microsoft operating systems) is used to step through the execution of the 

artifice. Ethereal [ETHER] (a packet sniffer) is used to capture the exfiltrated packets 

sent by the target machine. 

B. THE ASSEMBLY ENVIRONMENT  

1. Configuring MASM and TextPad 

Install MASM [IRVI03] and TextPad [TEXT]. Configure the TextPad tools menu 

to include the commands for building and running MASM programs. To add the build 

command to the tools menu, go to Configure and select Preferences. Click on Tools and 

Add a “DOS command….” Enter ‘make32.bat $BaseName’ and click OK. Rename the 

command to ‘Build 32-bit MASM’ and click Apply. Expand Tools in the left-hand pane 

and enter ‘$FileDir’ as the Initial folder (see Figure 23.) To add the run MASM tool, 

select Tools in the left-hand pane and click Add. Choose “DOS command…,” enter 

‘$BaseName’  and click OK. Rename the command ‘Run ASM Prog.’ Expand Tools, 

select Run ASM Prog and uncheck Capture output (see Figure 24) [IRVI03].  
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Figure 23.   Configure TextPad to Build MASM From [IRVI03] 

 

 
Figure 24.   Configure TextPad to Run ASM Program From [IRVI03] 

 

 



77 

2. Writing the Attack 

The link/loader patches the absolute (virtual) address of the global data table into 

the same location at the beginning of each function. The patch function needs to leave 9 

bytes at the start of the function to execute the displaced instructions from the target 

function. The instruction that loads the address of the global data table in all functions 

need to be aligned through the insertion of 9 nop instructions (see Figure 25.)  

To jump to an address stored in the jump table, load the effective address of the 

desired entry in the jump table into a register. Then move the contents of that address into 

a register and jump to the register (see Figure 25.) 

To access local variables in position independent code, call the label of the next 

instruction and then pop the address from the stack to find the current absolute address. 

Add or subtract the offset of the local variables from this address (see Figure 25.)  

3. Debugging with PEBrowse 

Install PE Browse Interactive (www.smidgeonsoft.com.) Choose Start Debugging  

from the File menu and select the executable file to debug. Use the index pane on the left-

hand side to browse the sections of the PE (Portable Executable) file. Right click on the 

.text section and choose Disassemble to see the disassembly, or Dump to view the hex 

dump. Step through the execution with the F10 function key. To view the disassembly of 

a kernel module, choose Load Module from the File menu.  The sections of the PE file 

will appear in the index pane as before.  

4. Preparing the Scripts 

To get the opcodes of the attack function into a script, copy the dump of the .text 

section of the executable file into a TextPad document. The copy function of PE Browse 

copies the whole section. Use TextPad’s search and replace by regular expression to strip 

out the line numbers, ASCII, and all spaces. Copy the hex into a script to create a load 

packet. See Figure 26 for a sample script using SendIP to create a load packet. 
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Alignment of the global data table address 

    Nop 

    nop 

    ... 

    nop 

    nop 

Nine nop instructions for alignment 

    Pushad 

    pushfd 

Save all registers and flags 

    Mov ebx, 12345678h Move the address of global data table into a register 

Using the jump table 
    Lea ecx, [ebx + 4] Load the effective address of the second entry of the 

jump table into a register (each entry is 4 bytes long) 

    Mov ecx, [ecx] Move the contents of the second entry into a register 

    Jmp ecx Jump to the address in the second entry of the jump 

table 

Accessing local variables 

    Var1 DWORD 0111h 

    var2 DWORD 0222h 

Variable declaration 

    call L1 

L1: pop ebx   

Call the next instruction (at label L1) 

Pop the last entry on the stack into a register; this is 

the location of the label L1. Access the local 

variables by subtracting their offset from this 

location.  

 
Figure 25.   The Attack Function Template 
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#!/bin/bash 

sendip -v -d 0x0403020181000000000CAABBCCDDEEFFAABBCCDDEEFF  

-p ipv4 -is <source IP> -id <destination IP> 

-p udp -us 500 -ud 53 -uc 58391 <target IP> 

 

Field Value 

Session ID 04030201 

Feedback (0x1000) 8 

Function number (Load) 1 

Unused 00 

Offset 0000 

Length 000C 

Data AABBCCDDEEFFAABBCCDDEEFF 

    
 

Figure 26.   SendIP Script for a Load Packet 

 

C.  THE TEST ENVIRONMENT 

 The test environment consists of the subverted target machine that has an IPSec 

connection established with the bystander machine and the attacker machine, which 

communicates with the artifice and intercepts the exfiltrated data.  

1. Using SoftICE  

The SoftICE kernel debugger [ICE] was used to step through the attack on the 

subverted target. To load the symbols for the subverted tcpip.sys file, run a checked build 

of the driver and copy all source files and the .pdb file to the target computer.  Open 

SoftICE’s Symbol Loader and open tcpip.sys. Click on the Load icon. Set a breakpoint at 

the start of the artifice base function. See Table 10 for a listing of useful SoftICE 

commands. 
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Ctrl-D View SoftICE 

lines  Change the length of the SoftICE window 

width  Change the width of the SoftICE window 

bpx  Set breakpoint on execution 

bl List breakpoints 

bd Disable breakpoint 

bc Clear breakpoint 

wd Watch data 

D Display 

F8 Step into 

F10 Step over 

G Go 

 

Table 10. Useful SoftICE Commands 

  

2. Executing the Attack 

Open Ethereal and start capturing packets. Load the second phase of the artifice 

base and all attack functions. Set the triggers and run the findModule function. Stop the 

Ethereal capture and filter by the IP address of the target computer. Sort by protocol and 

locate the ICMP packet that contains the module entry for IPSec.sys (see Figure 27.) 

Calculate the address of the target function from the load address that is returned and 

enter that address in the data field of the patching function’s trigger packet. Run the 

patching function and activate the patch. Start another capture with Ethereal. Open an 

FTP connection between the target and the bystander and transfer a file. Figure 28 shows 

the Ethereal capture of a file containing the text “This file contains sensitive information” 

being transferred between the subverted target computer and the bystander over an IPSec 

connection. 
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Figure 27.   Exfiltrated Module List Entry 

 

 
Figure 28.   Exfiltrated Clear Text 
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